博碩士論文 111329012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:145 、訪客IP:18.221.102.63
姓名 戴文琪(Wen-Chi Tai)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 廢棄印刷電路板粉塵回收:非金屬部分摻混至高分子再利用
(Non-Metallic waste PCB dust for the low carbon plastic applications)
相關論文
★ Development of periodic nanostructure substrates for the applications of SERS and water-splitting★ 應用於電催化析氧反應之高性能多金屬尖晶石 合成及其機理動力學模擬研究
★ 高熵氧化物(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O)應用於鋰離子電池負極材料之研究★ 利用金屬鹽類雷射加工技術於碳材料上 製造高熵奈米粒子進行催化反應之應用
★ 石墨烯/高熵奈米陶瓷觸媒之製備暨有機汙染物降解效率探討★ 高熵氧化物電極於類海水催化應用
★ 利用噴霧造粒製備中熵氧化物應用於鋰離子電池負極材料之研究★ 回收廢棄電路板之材料於生醫檢測與儲能元件 之應用
★ 可逆高熵氧化物陽極應用於 鋰離子全電池之研究★ 開發液漩式重力分選技術用於廢棄PCB成型板粉塵回收資源化
★ 高熵硒化物觸媒應用於電芬頓反應降解有機污染物之研究★ 先進高熵電催化劑在水處理中的開發之氨分解和氫生產
★ 水熱合成析氧反應電催化觸媒及其在鹼性膜電解水中的應用★ 高熵氧化物應用於鋰離子電池負極並探討最佳負極/正極配方
★ 高效環境友善製程回收鋰離子電池正極材料製備 析氧反應之催化劑★ 通過表面分析技術研究高熵氧化物(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O)鋰離子電池負極之失效機制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-1以後開放)
摘要(中) 近年來,地球暖化加劇,極端的氣候,造成許多「自然」災害在世界各地發生,因此,保護環境刻不容緩,世界各國也提出相關政策,如歐盟綠色新政、中國的碳達峰、碳中和目標、美國的再生能源支持計畫,以及各種塑膠廢棄物的管控措施等。為了對保護這個環境盡一份心力,延續先前開發的印刷電路板粉塵回收,將分選液進行回收,評估擴大其應用範圍的可能性,並把分選過後的非金屬粉塵,摻混至其他材料中,形成新的再生材料。使用減壓蒸餾技術,我們成功回收了 90% 以上的分選液。後續也嘗試分選後成型版粉塵的非金屬部分,摻混至其他高分子中,進行再利用,其中以球磨 2hr ,摻混比例為 10% 的試片擁有最佳的抗拉強度,且此試片的最大分解速率溫度在約 425℃ 相較於未添加的試片有較佳的熱穩定性,摻混非金屬粉塵後,形成一種強度及硬度較好且耐高溫的再生材料。
除了原先的成型版粉塵,我們也將此分選技術應用在鑽孔粉塵上,也成功進行分選,分選後其非金屬粉塵的銅含量約在 0.96wt% ,下層金屬粉塵銅含量則為 75.29wt% 。
摘要(英) In recent years, exacerbated global warming and extreme weather conditions have led to numerous natural disasters worldwide. Consequently, environmental conservation has become an urgent priority, prompting countries worldwide to enact relevant policies. Examples include the European Union′s Green Deal, China′s commitments to peak carbon emissions and achieve carbon neutrality, the United States′ support for renewable energy initiatives, and various measures to control plastic waste.

In order to contribute to environmental protection efforts, we are continuing our previous development of recycling printed circuit board (PCB) dust, with a focus on expanding the scope of its application. We are evaluating the possibility of incorporating the recycled separating solution into other materials, creating new recycled materials. Through the use of vacuum distillation technology, we have successfully achieved a recovery rate of over 90% for the separating solution.

Furthermore, we have attempted to separate the non-metallic portion of the shaping dust and incorporate it into other polymers for recycling. Among the various processing methods tested, content 10% non-metal powder that is ball milled for 2hr have a resulted in the highest tensile strength. Additionally, the maximum decomposition rate temperature of the sample with added non-metallic dust is approximately 425°C, indicating better thermal stability compared to samples without additives. This blending of non-metallic dust produces a recycled material with improved strength, hardness, and high-temperature resistance.

In addition to the original application for shaping dust, we have extended this separation technology to drilling dust, achieving successful separation. The non-metallic copper content of the separated non-metallic dust from drilling dust is approximately 0.96wt%, while the copper content of the lower-layer metallic dust is 75.29wt%
關鍵字(中) ★ 循環經濟
★ 液漩式重力分選
★ 廢棄物資源化
★ ESG
★ 減碳
關鍵字(英) ★ Circular economy
★ Liquid vortex gravity separation
★ Waste recycling
★ ESG
★ Carbon reduction
論文目次 目錄
中文摘要 I
ABSTRACT II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 研究背景 2
1-3 ESG 2
第二章 文獻回顧 4
2-1 印刷電路板介紹 4
2-2 非金屬粉塵參混材料之再利用 4
2-3 環氧樹脂 3D 列印添加填料應用 6
2-4 材料摻混前表面改質 8
2-4-1 偶聯劑進行表面改質 8
2-4-2 球磨進行表面改質 11
2-5 液漩式重力分選 13
第三章 實驗步驟 15
3-1 化學藥品 15
3-2 印刷電路板液漩式重力分選 15
3-2-1 分選液回收 16
3-3 非銅粉塵再利用 17
3-4 鑽孔粉分選 19
3-5 分析儀器 20
3-5-1 拉伸試驗機 20
3-5-2 X-ray繞射分析儀(XRD) 20
3-5-3 感應耦合電漿光學發射光譜儀(ICP-OES) 21
3-5-4 雷射粒徑分析儀 22
3-5-5 熱重分析儀(TGA) 23
3-5-6 雷射顯微鏡 24
3-5-7 傅立葉轉換紅外光譜(FTIR) 24
3-5-8 冷場發射掃描式電子顯微鏡(CFE-SEM) 25
第四章 結果與討論 26
4-1 分選液回收 26
4-2 3D列印樹脂摻混 27
4-2-1 機械性質 27
4-2-2 TGA 35
4-2-3 粒徑分析和FTIR 38
4-2-4 雷射顯微鏡與 SEM 41
4-3 橡膠摻混 46
4-4 鑽孔粉分選 47
4-4-1 鑽孔粉塵形貌分析 47
4-4-2 金屬絲 XRD 分析 50
4-4-3 TGA 及 ICP 分析 51
第五章 結論 53
第六章 未來工作 54
參考文獻 55
參考文獻 參考文獻
1. Nekouei, R.K., et al., Current trends in direct transformation of waste printed circuit boards (WPCBs) into value-added materials and products. Current Opinion in Green and Sustainable Chemistry, 2020. 24: p. 14-20.
2. Williams, P.T., Valorization of printed circuit boards from waste electrical and electronic equipment by pyrolysis. Waste and Biomass Valorization, 2010. 1(1): p. 107-120.
3. Gautam, P., et al., High added-value materials recovery using electronic scrap-transforming waste to valuable products. Journal of Cleaner Production, 2022. 330: p. 129836.
4. Wang, J. and Z. Xu, Disposing and recycling waste printed circuit boards: disconnecting, resource recovery, and pollution control. Environmental science & technology, 2015. 49(2): p. 721-733.
5. Hu, D., et al., High Value-Added Reutilization of Waste-Printed Circuit Boards Non-Metallic Components in Sustainable Polymer Composites. Molecules, 2023. 28(17): p. 6199.
6. Luda, M.P., Recycling of printed circuit boards, in Integrated Waste Management-Volume II. 2011, IntechOpen.
7. Oluokun, O.O. and I.O. Otunniyi, Kinetic analysis of Cu and Zn dissolution from printed circuit board physical processing dust under oxidative ammonia leaching. Hydrometallurgy, 2020. 193: p. 105320.
8. Wan, X., et al., Reaction mechanisms of waste printed circuit board recycling in copper smelting: The impurity elements. Minerals Engineering, 2021. 160: p. 106709.
9. Tang, C., et al., Electrochemical dissolution and recovery of tin from printed circuit board in methane–sulfonic acid solution. Hydrometallurgy, 2021. 205: p. 105726.
10. Kang, K.D., et al., Assessment of pre-treatment techniques for coarse printed circuit boards (PCBs) recycling. Minerals, 2021. 11(10): p. 1134.
11. Ning, C., et al., Waste printed circuit board (PCB) recycling techniques. Chemistry and Chemical Technologies in Waste Valorization, 2018: p. 21-56.
12. Peng, M., et al. New solutions for reusing nonmetals reclaimed from waste printed circuit boards. in Proceedings of the 2005 IEEE International Symposium on Electronics and the Environment, 2005. 2005. IEEE.
13. Peerzada, M., et al., Additive manufacturing of epoxy resins: materials, methods, and latest trends. Industrial & Engineering Chemistry Research, 2020. 59(14): p. 6375-6390.
14. Farahani, R.D., M. Dubé, and D. Therriault, Three‐dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications. Advanced materials, 2016. 28(28): p. 5794-5821.
15. Shah, M., et al., Vat photopolymerization-based 3D printing of polymer nanocomposites: current trends and applications. RSC advances, 2023. 13(2): p. 1456-1496.
16. Gonzalez, G., et al., Development of 3D printable formulations containing CNT with enhanced electrical properties. Polymer, 2017. 109: p. 246-253.
17. Hao, W., et al., Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composites. Polymer Testing, 2018. 65: p. 29-34.
18. Ren, N., et al., Filler-reinforced elastomers based on functional polyolefin prepolymers. Industrial & Engineering Chemistry Research, 2016. 55(21): p. 6106-6112.
19. Watanabe, R., et al., Polypropylene-based nanocomposite with enhanced aging stability by surface grafting of Silica Nanofillers with a silane coupling agent containing an antioxidant. ACS omega, 2020. 5(21): p. 12431-12439.
20. Yu, J., et al., Silane coupling agent modification treatment to improve the properties of rubber–cement composites. ACS Sustainable Chemistry & Engineering, 2021. 9(38): p. 12899-12911.
21. Zheng, W., et al., Micro-scale effects of nano-SiO2 modification with silane coupling agents on the cellulose/nano-SiO2 interface. Nanotechnology, 2019. 30(44): p. 445701.
22. Tóth, Á.D., et al., Surface Modification of Silica Nanoparticles with Ethyl Oleate for the Purpose of Stabilizing Nanolubricants Used for Tribological Tests. Ceramics, 2023. 6(2): p. 980-993.
23. Zhang, C., et al., Nano‐sio2‐reinforced ultraviolet‐curing materials for three‐dimensional printing. Journal of Applied Polymer Science, 2015. 132(31).
24. Nakashima, Y., M. Fukushima, and H. Hyuga, Surface modification of silica powder by mild ball milling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022. 652: p. 129828.
25. Yoğurtcuoğlu, E. and M. Uçurum, Surface modification of calcite by wet-stirred ball milling and its properties. Powder Technology, 2011. 214(1): p. 47-53.
26. Ning, R., et al., Surface modification of titanium hydride with epoxy resin via microwave-assisted ball milling. Applied surface science, 2014. 316: p. 632-636.
27. 張睿丰, 開發液漩式重力分選技術用於廢棄 PCB 成型板粉塵回收資源化, in 材料科學與工程研究所. 2023, 國立中央大學.
28. Muhammad, Y.H. and S. Ahmad, Mechanical and thermal properties of glass fiber-reinforced epoxy composite with matrix modification using liquid epoxidized natural rubber. Journal of Reinforced Plastics and Composites, 2013. 32(9): p. 612-618.
29. Hameed, N., et al., Morphology, dynamic mechanical and thermal studies on poly (styrene-co-acrylonitrile) modified epoxy resin/glass fibre composites. Composites Part A: Applied Science and Manufacturing, 2007. 38(12): p. 2422-2432.
30. Tarani, E., et al., Effect of ball milling time on the formation and thermal properties of Ag2Se and Cu2Se compounds. Journal of Thermal Analysis and Calorimetry, 2023. 148(23): p. 13065-13081.
31. Barman, S. and R. Chakraborty, Printed circuit board-derived glass fiber-epoxy resin-supported Mo–Cu bimetallic catalyst for glucose synthesis. ACS omega, 2018. 3(12): p. 18499-18509.
32. Barnwal, A., S. Mir, and N. Dhawan, Processing of discarded printed circuit board fines via flotation. Journal of Sustainable Metallurgy, 2020. 6: p. 631-642.
33. Das, R.K., et al., Influence of non-metallic parts of waste printed circuit boards on the properties of plasticised polyvinyl chloride recycled from the waste wire. Waste Management & Research, 2019. 37(6): p. 569-577.
34. Gao, X., Q. Li, and J. Qiu, Hydrothermal modification and recycling of nonmetallic particles from waste print circuit boards. Waste management, 2018. 74: p. 427-434.
35. Nakashima, Y., et al., Non-firing ceramics: Activation of silica powder surface for achieving high-density solidified bodies. Advanced Powder Technology, 2018. 29(8): p. 1900-1903.
36. Nakashima, Y., et al., Non-firing ceramics: effect of adsorbed water on surface activation of silica powder via ball milling treatment. Advanced Powder Technology, 2019. 30(6): p. 1160-1164.
37. Zhao, R. and W. Luo, Fracture surface analysis on nano-SiO2/epoxy composite. Materials Science and Engineering: A, 2008. 483: p. 313-315.
38. Nayak, R.K., A. Dash, and B. Ray, Effect of epoxy modifiers (Al2O3/SiO2/TiO2) on mechanical performance of epoxy/glass fiber hybrid composites. Procedia materials science, 2014. 6: p. 1359-1364.
指導教授 洪緯璿(Wei-Hsuan Hung) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明