博碩士論文 111226066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.220.1.11
姓名 李承洋(Cheng-Yang Lee)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 利用孔徑效應改善光學成像之特定空間頻率響應
(Utilizing the aperture effect to improve the specific spatial frequency response of optical imaging)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-30以後開放)
摘要(中) 本論文將利用孔徑效應(aperture effect)改善光學系統之特定空間頻率之光學表現。本研究以傅氏光學為基礎,對光學系統進行分析,主要改變成像系統的孔徑穿透函數,提升該成像系統在特定空間頻率之調製傳遞函數,本論文包含模擬、實驗及設計共三個部分。
在模擬中對於有像差的成像系統進行分析,分析其調製傳遞函數。實驗中使用一維方向變化的濾光片,做為調整孔徑穿透振幅的元件,比較模擬及試驗是否吻合,結果顯示實驗及模擬結果接近。驗證實驗及模擬結果後,在本論文的最後分別設計了環形分布及一種結合高斯、環形分布的孔徑穿透函數。最後針對特定空間頻率進行設計,結合孔徑穿透函數及相位光罩,增加頻率響應。
摘要(英) This thesis aims to improve the optical performance of specific spatial frequencies in optical systems by utilizing aperture effects. Based on Fourier optics, this study analyzes optical systems by primarily altering the aperture transfer function of the imaging system to enhance its modulation transfer function at specific spatial frequencies. The paper includes three sections: simulation, experimentation, and design.
In the simulation, imaging systems with aberrations are analyzed to study their modulation transfer functions. During the experiments, a filter with one-dimensional directional variations is used as the aperture adjustment element. The experimental results are then compared with the simulations to determine their consistency, and the results show that the experimental and simulation outcomes are close. After validating the experimental and simulation results, the final section of the paper designs two types of aperture transfer functions: one with a ring distribution and another combining Gaussian and ring distributions. The simulation results demonstrate that this design significantly enhances the frequency response at low spatial frequencies. After enhancing the spatial frequency response, the design incorporates a phase mask to target specific spatial frequencies, further increasing the frequency response at those specific spatial frequencies.
關鍵字(中) ★ 成像系統
★ 空間頻率
★ 調製傳遞函數
★ 光學設計
★ 傅氏光學
關鍵字(英) ★ Imaging System
★ Spatial Frequency
★ Modulation Transfer Function
★ Optical Design
★ Fourier Optics
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XV
第一章 緒論 1
1-1 引言 1
1-2 提高光學表現之技術簡介 2
1-3 研究動機 4
1-4 論文架構 5
第二章 分析調製傳遞函數之基本原理 6
2-1 傅氏轉換及定理 6
2-1-1 傅氏轉換 6
2-1-2 傅氏轉換定理 6
2-2 線性位移不變系統 9
2-3 成像系統之頻率響應分析 11
2-3-1 成像系統中的繞射效應 12
2-3-2 同調傳遞函數 16
2-3-3 光學傳遞函數 17
2-3-4 調製傳遞函數 18
2-4 像差 24
2-4-1 球面像差 25
2-4-2 彗星像差 26
2-4-3 像散 27
2-4-4 場曲 28
2-4-5 畸變 29
第三章 模擬及實驗流程 30
3-1 調製傳遞函數之分析方法 30
3-2 結合不同空間頻率響應 33
3-3 正空間及頻率空間座標轉換 35
3-4 實驗方法 36
第四章 模擬與實驗結果 41
4-1 分析不具像差之孔徑 41
4-2 分析具像差之成像系統 48
4-3 使用特殊分布孔徑之成像系統 54
4-4 實驗結果 73
4-4-1 單透鏡之調製傳遞函數 74
4-4-2 加上Apodization之實驗結果 74
第五章 針對低空間頻率設計之孔徑穿透函數 77
5-1 高斯分布之穿透函數 79
5-2 環狀分布之穿透函數 82
5-3 結合高斯及環狀分布之穿透函數 86
5-4 結合相位光罩之穿透函數 90
第六章 結論 98
參考文獻 100
中英名詞對照表 103
參考文獻 1. F. Cajori, A history of physics in its elementary branches: including the evolution of physical laboratories (Macmillan, 1899).
2. V. N. Mahajan, Optical imaging and aberrations: Ray geometrical optics: Part I. Ray Geometrical Optics, 1st ed. (SPIE press, United States, 1998).
3. Liu J., Malekzadeh M., Mirian N., Song T. A., Liu C., and Dutta J., "Artificial intelligence-based image enhancement in pet imaging: Noise reduction and resolution enhancement," PET clinics 16, 553-576 (2021).
4. J. W. Goodman, Introduction to Fourier optics, 3rd ed. (Roberts and Company publishers, United States, 2005).
5. A. N. K. Reddy, M. Hashemi, and D. K. Sagar, “Effects of aberrations on the point spread function and the two-point resolution with versatile apodization pupils,” Pramana – J. Phys. 94, 145 (2020).
6. A. N. K. Reddy, M. Hashemi, and S. N. Khonina, “Apodization of two-dimensional pupils with aberrations,” Pramana – J. Phys. 90, 77 (2018).
7. I. Estévez, J.C. Escalera, Q.P. Stefano, C. Iemmi, S. Ledesma, M.J. Yzuel, and J. Campos, “Image enhancement by spatial frequency post-processing of images obtained with pupil filters,” Opt. Commun. 380, 21-27 (2016).
8. V. N. Mahajan, and J. A. Díaz, “Imaging characteristics of Zernike and annular polynomial aberrations,” Appl. Opt. 52, 2062-2074 (2013).
9. J. Schwiegerling, “Linear decomposition of the optical transfer function for annular pupils,” Current Developments in Lens Design and Optical Engineering XVIII, 84-88 (2017).
10. J. Schwiegerling, “Relating wavefront error, apodization, and the optical transfer
function: on-axis case,” JOSA A 31, 2476–2483 (2014).
11. 劉勁谷,具有偏極及光強分佈之孔徑的繞射極限的研究,國立中央大光電所碩士論文,民國90年。
12. C. C. Sun, and C. K. Liu, "Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation," Opt. Lett. 28, 99-101 (2003).
13. A. Avallone, and A. Basile, “On a linearity theorem for measures,” Sci. Math. Jpn. 60, 487-500 (2004).
14. A. Tversky, “Features of similarity,” Psychol. Rev. 84, 327 (1977).
15 S. C. Chapman, and M. W. Dunlop, “Some consequences of the shift theorem for multispacecraft measurements,” Geophys. Res. Lett. 20, 2023-2026 (1993).
16. G. C. Sherman, “Application of the convolution theorem to Rayleigh’s integral formulas,” JOSA 57, 546-547 (1967).
17. B. Hunt, “A matrix theory proof of the discrete convolution theorem,” IEEE Trans. Audio Electroacoust. 19, 285-288 (1971).
18. C. Zhu, L. Yu, Z .Yan, and S. Xiang, “Frequency estimation of the plenoptic function using the autocorrelation theorem,” IEEE Trans. Comput. Imaging 3, 966-981 (2017).
19. G. Basile, and G. Marro, “Controlled and conditioned invariant subspaces in linear system theory,” J. Optim. Theory Appl. 3, 306-315 (1969).
20. G. B. Stan, J. J. Embrechts, and D. Archambeau, “Comparison of different impulse response measurement techniques,” J. Audio Eng. Soc. 50, 249-262 (2002).
21. H. H. Pesaran, and Y. Shin, “Generalized impulse response analysis in linear multivariate models,” Econ. Lett. 58, 17-29 (1998).
22. E. Abbe, "The relation of aperture and power in the microscope," J. R. Microsc. Soc. 2, 300-309 (1882).
23. Y. Y. Berest, and A. P. Veselov, “Huygens′ principle and integrability,” Russ. Math. Surv+. 49, 5 (1994).
24. 孫慶成, 光電工程概論 第二版 (全華圖書, 台灣, 2014).
25. J. A. Veerman, J. J. Rusch, and H. P. Urbach, “Calculation of the Rayleigh–Sommerfeld diffraction integral by exact integration of the fast oscillating factor,” JOSA A 22, 636-646 (2005).
26. F. Shen, and A. Wang, “Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula,” Appl. Opt. 45, 1102-1110 (2006).
27. M. Golshani, and M. Motamedifar, “Impact of aperture thickness on a Fraunhofer diffraction pattern,” J. Opt. 21, 045605 (2019).
28. M. R. Schroeder, "Modulation transfer functions: Definition and measurement," Acta Acust. united Acust. 49, 179-182 (1981).
29. G. D. Boreman, Modulation transfer function in optical and electro-optical systems
(SPIE press Bellingham, Washington, 2001).
30. 弘翔精密科技, “鏡頭 MTF 與相機選型的關係,” https://www.urvision-
tw.com/article_detail/13.htm.
31. B. D. Guenther, and D. Steel, Encyclopedia of modern optics (Academic Press, United Kingdom , 2018).
32. Jose Sasian, “Coma aberration” https://wp.optics.arizona.edu/jsasian/wp-content
/uploads/sites/33/2016/03/L11_OPTI517_Coma_Aberration.pdf.
33. W. Harris, “Astigmatism,” Ophthal Physl Opt. 20, 11-30 (2000).
34. J. E. Greivenkamp, Field guide to geometrical optics (SPIE, United States, 2004).
指導教授 楊宗勳 孫慶成(Tsung-Hsun Yang Ching-Cherng Sun) 審核日期 2024-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明