參考文獻 |
1. Li, F., et al., Bottom-up synthesis of 2D layered high-entropy transition metal hydroxides. Nanoscale Advances, 2022. 4(11): p. 2468-2478.
2. Shi, M., et al., Nanoflower-like high-entropy Ni–Fe–Cr–Mn–Co(oxy) hydroxides for oxygen evolution. Chemical Communications, 2023. 59(80): p. 11971-11974.
3. Rani, B.J., et al., Supercapacitor and OER activity of transition metal(Mo, Co, Cu) sulphides. Journal of Physics and Chemistry of Solids, 2020. 138: p. 109240.
4. Li, X., Q. Zha, and Y. Ni, Ni–Fe phosphate/Ni foam electrode: facile hydrothermal synthesis and ultralong oxygen evolution reaction durability. ACS sustainable chemistry & engineering, 2019. 7(22): p. 18332-18340.
5. Anantharaj, S., S. Kundu, and S. Noda, “The Fe Effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy, 2021. 80: p. 105514.
6. Suen, N.-T., et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017. 46(2): p. 337-365.
7. Gong, M., et al., An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. Journal of the American Chemical Society, 2013. 135(23): p. 8452-8455.
8. Song, F. and X. Hu, Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nature communications, 2014. 5(1): p. 4477.
9. Lu, Z., et al., Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chemical communications, 2014. 50(49): p. 6479-6482.
10. Zhou, D., et al., Activating basal plane in NiFe layered double hydroxide by Mn 2+ doping for efficient and durable oxygen evolution reaction. Nanoscale Horizons, 2018. 3(5): p. 532-537.
11. Smolinka, T., et al., The history of water electrolysis from its beginnings to the present, in Electrochemical power sources: fundamentals, systems, and applications. 2022, Elsevier. p. 83-164.
12. David, M., C. Ocampo-Martínez, and R. Sánchez-Peña, Advances in alkaline water electrolyzers: A review. Journal of Energy Storage, 2019. 23: p. 392-403.
13. Chatenet, M., et al., Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chemical Society Reviews, 2022. 51(11): p. 4583-4762.
14. Millet, P. and S. Grigoriev, Water electrolysis technologies. Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety, 2013. 19.
15. Bowen, C., et al., Developments in advanced alkaline water electrolysis. International journal of hydrogen energy, 1984. 9(1-2): p. 59-66.
16. Zeng, K. and D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in energy and combustion science, 2010. 36(3): p. 307-326.
17. Brauns, J. and T. Turek, Alkaline water electrolysis powered by renewable energy: A review. Processes, 2020. 8(2): p. 248.
18. Zhang, B., et al., Advancing proton exchange membrane electrolyzers with molecular catalysts. Joule, 2020. 4(7): p. 1408-1444.
19. Wirkert, F.J., et al., A modular design approach for PEM electrolyser systems with homogeneous operation conditions and highly efficient heat management. International Journal of Hydrogen Energy, 2020. 45(2): p. 1226-1235.
20. Kang, Z., et al., Studying performance and kinetic differences between various anode electrodes in proton exchange membrane water electrolysis cell. Materials, 2022. 15(20): p. 7209.
21. Holzapfel, P., et al., Directly coated membrane electrode assemblies for proton exchange membrane water electrolysis. Electrochemistry Communications, 2020. 110: p. 106640.
22. Carmo, M., et al., A comprehensive review on PEM water electrolysis. International journal of hydrogen energy, 2013. 38(12): p. 4901-4934.
23. Chen, Y., et al., Key components and design strategy for a proton exchange membrane water electrolyzer. Small Structures, 2023. 4(6): p. 2200130.
24. Bühre, L.V., et al., Adaptation of a PEMFC Reference Electrode to PEMWE: Possibilities and Limitations. Journal of The Electrochemical Society, 2023. 170(9): p. 094507.
25. Du, N., et al., Anion-exchange membrane water electrolyzers. Chemical reviews, 2022. 122(13): p. 11830-11895.
26. Xiao, L., et al., First implementation of alkaline polymer electrolyte water electrolysis working only with pure water. Energy & Environmental Science, 2012. 5(7): p. 7869-7871.
27. Yang, J., et al., Non-precious electrocatalysts for oxygen evolution reaction in anion exchange membrane water electrolysis: A mini review. Electrochemistry communications, 2021. 131: p. 107118.
28. Maier, M., et al., Mass transport in PEM water electrolysers: A review. International Journal of Hydrogen Energy, 2022. 47(1): p. 30-56.
29. Liu, H., et al., Effect of catalyst ink and formation process on the multiscale structure of catalyst layers in PEM fuel cells. Applied Sciences, 2022. 12(8): p. 3776.
30. Toudret, P., et al., Impact of the cathode layer printing process on the performance of MEA integrating PGM free catalyst. Catalysts, 2021. 11(6): p. 669.
31. Park, J., et al., Roll-to-roll production of catalyst coated membranes for low-temperature electrolyzers. Journal of Power Sources, 2020. 479: p. 228819.
32. Gomes Bezerra, C.A., L.J. Deiner, and G. Tremiliosi-Filho, Unexpected performance of inkjet‐printed membrane electrode assemblies for proton exchange membrane fuel cells. Advanced Engineering Materials, 2019. 21(11): p. 1900703.
33. Shahgaldi, S., I. Alaefour, and X. Li, Impact of manufacturing processes on proton exchange membrane fuel cell performance. Applied energy, 2018. 225: p. 1022-1032.
34. Wang, M., et al., Impact of microporous layer roughness on gas-diffusion-electrode-based polymer electrolyte membrane fuel cell performance. ACS Applied Energy Materials, 2019. 2(11): p. 7757-7761.
35. Ham, K., et al., Extensive active-site formation in trirutile CoSb2O6 by oxygen vacancy for oxygen evolution reaction in anion exchange membrane water splitting. ACS Energy Letters, 2021. 6(2): p. 364-370.
36. Yue, K., et al., In situ ion-exchange preparation and topological transformation of trimetal–organic frameworks for efficient electrocatalytic water oxidation. Energy & Environmental Science, 2021. 14(12): p. 6546-6553.
37. Chanda, D., et al., Optimization of synthesis of the nickel-cobalt oxide based anode electrocatalyst and of the related membrane-electrode assembly for alkaline water electrolysis. Journal of Power Sources, 2017. 347: p. 247-258.
38. Wen, Q., et al., Schottky heterojunction nanosheet array achieving high‐current‐density oxygen evolution for industrial water splitting electrolyzers. Advanced Energy Materials, 2021. 11(46): p. 2102353. |