參考文獻 |
1. 笪琦、李向東、王如德,一種車輛前風檔玻璃自動防炫目系統,China Patent C103273826A (4 September 2013).
2. 張曉東、馬俊、陳克,一種不影響駕駛員視野的汽車擋風玻璃防炫目裝置,China Patent CN210309868U (14 April 2020).
3. G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, and L. Zdeborová, “Machine learning and the physical sciences,” Rev. Mod. Phys. 91, 045002 (2019)
4. M. I. Jordan, and T. M. Mitchell, “Machine learning: Trends, perspectives, and prospects,” Science 349, 255-260 (2015).
5. B. Mahesh, “Machine learning algorithms-a review,” Int. J. Sci. Res. 9, 381-386 (2020).
6. E. Alpaydin, Machine learning, (MIT press, London, 2021).
7. Y. Freund, and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” J. Comput. Syst. Sci. 55, 119-139 (1997).
8. D. D. Margineantu, and T. G. Dietterich, “Pruning adaptive boosting,” presented at ICML, Nashville, USA, 211-218 July 1997.
9. A. J. Ferreira, and M. A. Figueiredo, Ensemble machine learning: Methods and Applications, (Springer, New York, 2012).
10. Y. Sun, Z. Liu, S. Todorovic, and J. Li, “Adaptive boosting for SAR automatic target recognition,” IEEE Trans. Aerosp. Electron. Syst. 43, 112-125 (2007).
11. G. Stockman, and L. G. Shapiro, Computer vision (Prentice Hall PTR, New Jersey, 2001).
12. A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep learning for computer vision: A brief review,” Comput. Intell. Neurosci. 2018, 7068349 (2018).
13. J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and S. Yan, “Sparse representation for computer vision and pattern recognition,” Proc. IEEE 98, 1031-1044 (2010).
14. V. Wiley, and T. Lucas, “Computer vision and image processing: a paper review,” Int. J. Artif. Intell. Res. 2, 29-36 (2018).
15. F. C. Crow, “Summed-area tables for texture mapping,” presented at Proceedings of the 11th annual conference on Computer graphics and interactive techniques, Minnesota, USA, 207-212 July 1984.
16. J. Hensley, T. Scheuermann, G. Coombe, M. Singh, and A. Lastra, “Fast summed-area table generation and its applications,” Comput. Graph. Forum 24, 547-556 2005.
17. E. Tapia, “A note on the computation of high-dimensional integral images,” Pattern Recognit. Lett. 32, 197-201 (2011).
18. J. Díaz, P. P. Vazquez, I. Navazo, and F. Duguet, “Real-time ambient occlusion and halos with summed area tables,” Comput. Graphics 34, 337-350 (2010).
19. D. Nehab, A. Maximo, R. S. Lima, and H. Hoppe, “GPU-efficient recursive filtering and summed-area tables,” ACM Transactions on Graphics (TOG) 30, 1-12 (2011).
20. E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden, “Pyramid methods in image processing,” RCA engineer 29, 33-41 (1984).
21. Y. Pang, T. Wang, R. M. Anwer, F. S. Khan, and L. Shao, “Efficient featurized image pyramid network for single shot detector,” presented at Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, California, USA, 7336-7344 June 2019.
22. Y. Mei, Y. Fan, Y. Zhang, J. Yu, Y. Zhou, D. Liu, Y. Fu, T. S. Huang, and H. Shi, “Pyramid attention network for image restoration,” Int. J. Comput. Vision 131, 3207-3225 (2023).
23. L. Xiao, B. Wu, and Y. Hu, “Surface defect detection using image pyramid,” IEEE Sens. J. 20, 7181-7188 (2020).
24. X. Fu, B. Liang, Y. Huang, X. Ding, and J. Paisley, “Lightweight pyramid networks for image deraining,” IEEE Trans. Neural Networks Learn. Syst. 31, 1794-1807 (2019).
25. A. Haar, “Der Massbegriff in der Theorie der kontinuierlichen Gruppen,” Ann. Math. 34, 147-169 (1933).
26. P. Viola, and M. Jones, “Rapid object detection using a boosted cascade of simple
features,” presented at Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition, Hawaii, USA, I-I December 2001.
27. J. Wu, S. C. Brubaker, M. D. Mullin, and J. M. Rehg, “Fast asymmetric learning for cascade face detection,” IEEE Trans. Pattern Anal. Mach. Intell. 30, 369-382 (2008).
28. M. T. Pham, Y. Gao, V. D. D. Hoang, and T. J. Cham, “Fast polygonal integration and its application in extending haar-like features to improve object detection,” presented at 2010 IEEE computer society conference on computer vision and pattern recognition, San Francisco, USA, 942-949 June 2010.
29. S. Guennouni, A. Ahaitouf, and A. Mansouri, “A Comparative Study of Multiple Object Detection Using Haar‐Like Feature Selection and Local Binary Patterns in Several Platforms,” Modell. Simul. Eng. 2015, 948960 (2015).
30. C. C. Hsieh, and D. H. Liou, “Novel Haar features for real-time hand gesture recognition using SVM,” J. Real-Time Image Process. 10, 357-370 (2015).
31. Y. N. Lin, T. Y. Hsieh, J. J. Huang, C. Y. Yang, V. R. Shen, and H. H. Bui, “Fast Iris localization using Haar-like features and AdaBoost algorithm,” Multimedia Tools Appl. 79, 34339-34362 (2020).
32. P. Soille, Morphological image analysis: principles and applications, (Springer, New York, 1999).
33. F. Zana, and J. C. Klein, “Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation,” IEEE Trans. Image Process. 10, 1010-1019 (2001).
34. J. L. Vivero-Escoto, Y. D. Chiang, K. C. Wu, and Y. Yamauchi, “Recent progress in mesoporous titania materials: adjusting morphology for innovative applications,” Sci. Technol. Adv. Mater. 13, 013003 (2012).
35. D. Keysers, T. Deselaers, C. Gollan, and H. Ney, “Deformation Models for Image Recognition,” IEEE Trans. Pattern Anal. Mach. Intell. 29, 1422-1435 (2007).
36. H. Wang, G. Li, Z. Ma, and X. Li, “Application of neural networks to image recognition of plant diseases,” presented at 2012 International conference on systems and informatics, Yantai, China, 2159-2164 May 2012.
37. Z. Zhang, L. Zhao, and T. Yang, “Research on the application of artificial intelligence in image recognition technology,” presented at Journal of Physics: Conference Series, London, UK, 032118 August 2021.
38. G. Lou, and H. Shi, “Face image recognition based on convolutional neural network,” China Commun. 17, 117-124 (2020).
39. W. Rong, Z. Li, W. Zhang, and L. Sun, “An improved CANNY edge detection algorithm,” presented at 2014 IEEE international conference on mechatronics and automation, Tianjin, China, 577-582 August 2014.
40. M. Ali, and D. Clausi, “Using the Canny edge detector for feature extraction and enhancement of remote sensing images,” presented at IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, Australia, 2298-2300 July 2001.
41. E. S. Li, S. L. Zhu, B. S. Zhu, Z. Yong, C. G. Xia, and L. H. Song, “An adaptive edge-detection method based on the canny operator,” presented at 2009 International Conference on Environmental Science and Information Application Technology, Wuhan, China 465-469 July 2009.
42. I. Grishin, K. Thomson, F. Migliorini, and J. J. Sloan, “Application of the Hough transform for the automatic determination of soot aggregate morphology,” Appl. Opt. 51, 610-620 (2012).
43. N. Aggarwal, and W. C. Karl, “Line detection in images through regularized Hough transform,” IEEE Trans. Image Process. 15, 582-591 (2006).
44. D. Duan, M. Xie, Q. Mo, Z. Han, and Y. Wan, “An improved Hough transform for line detection,” presented at 2010 International Conference on Computer Application and System Modeling, Taiyuan, China, 354-357 October 2010.
45. X. H. Lee, C. C. Lin, Y. Y. Chang, H. X. Chen, and C. C. Sun, “Power management of direct-view LED backlight for liquid crystal display,” Opt. Laser Technol. 46, 142-144 (2013).
46. C. C. Sun, W. T. Chien, I. Moreno, C. T. Hsieh, M. C. Lin, S. L. Hsiao, and X. H. Lee, “Calculating model of light transmission efficiency of diffusers attached to a lighting cavity,” Opt. Express 18, 6137-6148 (2010).
47. Laptopmedia, “Top Laptop CPU Ranking,” https://laptopmedia.com/top-laptop-cpu-ranking.
48. Laptopmedia, “Top Laptop Graphics Ranking,” https://laptopmedia.com/top-laptop-graphics-ranking. |