參考文獻 |
參考文獻
1. Kim, T., et al., Lithium-ion batteries: outlook on present, future, and hybridized technologies. Journal of materials chemistry A, 2019. 7(7): p. 2942-2964.
2. Duffner, F., et al., Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nature Energy, 2021. 6(2): p. 123-134.
3. Zu, C., H. Yu, and H. Li, Enabling the thermal stability of solid electrolyte interphase in Li‐ion battery. InfoMat, 2021. 3(6): p. 648-661.
4. Luo, J.-Y., et al., Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nature chemistry, 2010. 2(9): p. 760-765.
5. Shen, X., et al., Research progress on silicon/carbon composite anode materials for lithium-ion battery. Journal of Energy Chemistry, 2018. 27(4): p. 1067-1090.
6. Sarkar, A., et al., High‐entropy oxides: fundamental aspects and electrochemical properties. Advanced materials, 2019. 31(26): p. 1806236.
7. Aamlid, S.S., et al., Understanding the role of entropy in high entropy oxides. Journal of the American Chemical Society, 2023. 145(11): p. 5991-6006.
8. McCormack, S.J. and A. Navrotsky, Thermodynamics of high entropy oxides. Acta Materialia, 2021. 202: p. 1-21.
9. Bérardan, D., et al., Room temperature lithium superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 2016. 4(24): p. 9536-9541.
10. Han, X., et al., A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification. Journal of power sources, 2014. 251: p. 38-54.
11. Krysify. Introduction and performance of battery types. 2023.
12. Wang, J., et al., Challenges and progresses of lithium-metal batteries. Chemical Engineering Journal, 2021. 420: p. 129739.
13. Zhang, S.S., A review on the separators of liquid electrolyte Li-ion batteries. Journal of power sources, 2007. 164(1): p. 351-364.
14. Pan, Y., et al., Functional membrane separators for next-generation high-energy rechargeable batteries. National Science Review, 2017. 4(6): p. 917-933.
15. Jie, Y., et al., Advanced liquid electrolytes for rechargeable Li metal batteries. Advanced Functional Materials, 2020. 30(25): p. 1910777.
16. Zhang, W., et al., Colossal granular lithium deposits enabled by the grain‐coarsening effect for high‐efficiency lithium metal full batteries. Advanced Materials, 2020. 32(24): p. 2001740.
17. You, S., et al., Design strategies of Si/C composite anode for lithium‐ion batteries. Chemistry–A European Journal, 2021. 27(48): p. 12237-12256.
18. Mu, G., et al., Impacts of negative to positive capacities ratios on the performance of next-generation lithium-ion batteries. Electrochimica Acta, 2022. 406: p. 139878.
19. Song, B.F., A. Dhanabalan, and S.L. Biswal, Evaluating the capacity ratio and prelithiation strategies for extending cyclability in porous silicon composite anodes and lithium iron phosphate cathodes for high capacity lithium-ion batteries. Journal of Energy Storage, 2020. 28: p. 101268.
20. Son, B., et al., Effect of cathode/anode area ratio on electrochemical performance of lithium-ion batteries. Journal of Power Sources, 2013. 243: p. 641-647.
21. Jin, L., et al., Pre‐lithiation strategies for next‐generation practical lithium‐ion batteries. Advanced Science, 2021. 8(12): p. 2005031.
22. Wang, F., et al., Prelithiation: a crucial strategy for boosting the practical application of next-generation lithium ion battery. ACS nano, 2021. 15(2): p. 2197-2218.
23. Zhan, R., et al., Promises and challenges of the practical implementation of prelithiation in lithium‐ion batteries. Advanced Energy Materials, 2021. 11(35): p. 2101565.
24. Kim, H.J., et al., Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano letters, 2016. 16(1): p. 282-288.
25. Meng, Q., et al., High-performance lithiated SiO x anode obtained by a controllable and efficient prelithiation strategy. ACS applied materials & interfaces, 2019. 11(35): p. 32062-32068.
26. Huang, Z., et al., Progress and challenges of prelithiation technology for lithium‐ion battery. Carbon Energy, 2022. 4(6): p. 1107-1132.
27. Xu, H., et al., Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries. Energy & Environmental Science, 2019. 12(10): p. 2991-3000.
28. Yue, X.Y., et al., Unblocked electron channels enable efficient contact prelithiation for lithium‐ion batteries. Advanced Materials, 2022. 34(15): p. 2110337.
29. Yeh, J.W., et al., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced engineering materials, 2004. 6(5): p. 299-303.
30. George, E.P., D. Raabe, and R.O. Ritchie, High-entropy alloys. Nature reviews materials, 2019. 4(8): p. 515-534.
31. Zhang, W., P.K. Liaw, and Y. Zhang, Science and technology in high-entropy alloys. Sci. China Mater, 2018. 61(1): p. 2-22.
32. Li, W., et al., Mechanical behavior of high-entropy alloys. Progress in Materials Science, 2021. 118: p. 100777.
33. Chang, X., et al., Phase engineering of high‐entropy alloys. Advanced Materials, 2020. 32(14): p. 1907226.
34. Sarkar, A., et al., High entropy oxides for reversible energy storage. Nature communications, 2018. 9(1): p. 3400.
35. Qiu, N., et al., A high entropy oxide (Mg0. 2Co0. 2Ni0. 2Cu0. 2Zn0. 2O) with superior lithium storage performance. Journal of Alloys and Compounds, 2019. 777: p. 767-774.
36. Liu, X., et al., Molten salt synthesis, morphology modulation, and lithiation mechanism of high entropy oxide for robust lithium storage. Journal of Energy Chemistry, 2023. 86: p. 536-545.
37. Kheradmandfard, M., et al., Ultrafast green microwave-assisted synthesis of high-entropy oxide nanoparticles for Li-ion battery applications. Materials Chemistry and Physics, 2021. 262: p. 124265.
38. Triolo, C., et al., Evaluation of entropy‐stabilized (Mg0. 2Co0. 2Ni0. 2Cu0. 2Zn0. 2) O oxides produced via solvothermal method or electrospinning as anodes in lithium‐ion batteries. Advanced Functional Materials, 2022. 32(32): p. 2202892.
39. Alshataif, Y.A., et al., Manufacturing methods, microstructural and mechanical properties evolutions of high-entropy alloys: a review. Metals and Materials International, 2020. 26: p. 1099-1133.
40. Anandkumar, M. and E. Trofimov, Synthesis, properties, and applications of high-entropy oxide ceramics: Current progress and future perspectives. Journal of Alloys and Compounds, 2023: p. 170690.
41. Khan, N.A., et al., Nanostructured AlCoCrCu0. 5FeNi high entropy oxide (HEO) thin films fabricated using reactive magnetron sputtering. Applied Surface Science, 2021. 553: p. 149491.
42. Ocelík, V., et al., Additive manufacturing of high-entropy alloys by laser processing. Jom, 2016. 68: p. 1810-1818.
43. Li, X., Additive manufacturing of advanced multi‐component alloys: bulk metallic glasses and high entropy alloys. Advanced Engineering Materials, 2018. 20(5): p. 1700874.
44. Brinker, C.J. and G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing. 2013: Academic press.
45. R&D, Z. Electrochemical analysis methods-Cyclic Voltammetry, CV. 2022.
46. Kim, T., et al., Applications of voltammetry in lithium ion battery research. Journal of Electrochemical Science and Technology, 2020. 11(1): p. 14-25.
47. Feng, X., et al., Using probability density function to evaluate the state of health of lithium-ion batteries. Journal of Power Sources, 2013. 232: p. 209-218.
48. R&D, Z. Electrochemical AC Impedance Analysis. 2022.
49. Li, X., Q. Zha, and Y. Ni, Ni–Fe phosphate/Ni foam electrode: facile hydrothermal synthesis and ultralong oxygen evolution reaction durability. ACS sustainable chemistry & engineering, 2019. 7(22): p. 18332-18340.
50. Heubner, C., M. Schneider, and A. Michaelis, Diffusion‐limited C‐rate: a fundamental principle quantifying the intrinsic limits of Li‐ion batteries. Advanced Energy Materials, 2020. 10(2): p. 1902523.
51. Tsai, S.-H., et al., Applications of long-length carbon nano-tube (L-CNT) as conductive materials in high energy density pouch type lithium ion batteries. Polymers, 2020. 12(7): p. 1471.
52. Huang, L.-P., et al., Reversible high entropy oxide anode: Interfacial electrocatalysis for enhanced capacity and stability of LiNi0. 8Co0. 1Mn0. 1O2 lithium-ion batteries. Journal of Power Sources, 2024. 606: p. 234289.
53. Qi, K., et al., Novel polyimide binders integrated with soft and hard functional segments ensuring long-term high-voltage operating stability of high-energy NCM811 lithium-ion batteries up to 4.5 V. Applied Energy, 2022. 320: p. 119282.
54. Choi, W., et al., Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. Journal of Electrochemical Science and Technology, 2020. 11(1): p. 1-13.
55. Pastor-Fernández, C., et al. Identification and quantification of ageing mechanisms in Lithium-ion batteries using the EIS technique. in 2016 IEEE Transportation Electrification Conference and Expo (ITEC). 2016. IEEE. |