參考文獻 |
[1] S. Iida, K. Sakata, “Hydrogen technologies and developments in Japan”, Clean Energy, Vol. 3, pp. 105-113, (2019).
[2] J. Moore, B. Shabani, “A Critical Study of Stationary Energy Storage Policies in Australia in an International Context: The Role of Hydrogen and Battery Technologies”, Energies, Vol. 9, pp. 674, (2016).
[3] M. Götz, J. Lefebvre, F. Mörs, A. M. Koch, F. Graf, S. Bajohr, R. Reimert, T. Kolb, “Renewable Power-to-Gas: A technological and economic review”, Renew. Energ., Vol. 85, pp. 1371-1390, (2016).
[4] C. Duan, R. Kee, H. Zhu, N. Sullivan, L. Zhu, L. Bian, D. Jennings, R. O’Hayre, “Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production”, Nat. Energy, Vol. 4, pp. 230-240, (2019).
[5] L. Barelli, G. Bidini, G. Cinti, “Airflow Management in Solid Oxide Electrolyzer (SOE) Operation: Performance Analysis”, Chem. Eng., Vol 1, pp. 13, (2017).
[6] O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, S. Few, “Future cost and performance of water electrolysis: An expert elicitation study”, Int. J. Hydrog. Energy, Vol. 42, pp. 30470-30492, (2017).
[7] A. D′Epifanio, E. Fabbri, E. D. Bartolomeo, S. Licoccia, E. Traversa, “Design of BaZr0.8Y0.2O3–δ Protonic Conductor to Improve the Electrochemical Performance in Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs)”, Fuel Cells, Vol. 8, pp. 69, (2008).
[8] F. Iguchi, N. Sata, H. Yugami, “Proton transport properties at the grain boundary of barium zirconate based proton conductors for intermediate temperature operating SOFC”, J. Mater. Chem., Vol. 20, pp. 6265, (2010).
[9] F. Iguchi, N. Sata, H. Yugami, “Proton transport properties at the grain boundary of barium zirconate based proton conductors for intermediate temperature operating SOFC”, J. Mater. Chem., Vol. 20, pp. 6265, (2010).
[10] E Fabbri, L Bi, D Pergolesi, E Traversa, “Towards the Next Generation of Solid Oxide Fuel Cells Operating Below 600 °C with Chemically Stable Proton-Conducting Electrolytes”, Adv. Mater., Vol. 24, pp. 195-208, (2012).
[11] E. Fabbri, D. Pergolesi, E. Traversa, “Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells”, Sci Technol Adv Mater, Vol. 11, pp. 044301, (2010).
[12] W. Q, J. Hou, Y. Y. Fan, X. Xi, J. Li, Y. Lu, G. Huo, L. Shao, X. Z. Fu, J. L. Luo, “Pr2BaNiMnO7−δ double-layered Ruddlesden–Popper perovskite oxides as efficient cathode electrocatalysts for low temperature proton conducting solid oxide fuel cells”, J. Mater. Chem. A, Vol. 8, pp. 7704, (2020).
[13] Z. Wang, N. Zhang, J. Qiao, K. Sun, P. Xu, “Improved SOFC performance with continuously graded anode functional layer”, Electrochem. commun., Vol. 11, pp. 1120, (2009).
[14] L. Malavasi, C. A. Fisher, M. S. Islam, “Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features”, Chem Soc Rev, Vol. 39, pp. 4370, (2010).
[15] B.A. Boukamp, “The amazing perovskite anode”, Nature Materials, Vol. 2, pp. 294-296, (2003).
[16] I. Dincer, C.O. Colpa, “Introduction to stationary fuel cells. Solid Oxide Fuel Cells, The Royal Society of Chemistry, pp. 1–25, (2013).
[17] W. Zhang, Y. H. Hu, “Progress in proton‐conducting oxides as electrolytes for low‐temperature solid oxide fuel cells: From materials to devices”, Energy Sci. Eng., Vol. 9, pp. 984-1011, (2021).
[18] Z.‐P. Sun, L. Liu, L. Zhang, D.-Z. Jia, “Rapid synthesis of ZnO nano‐ rods by one‐step, room‐temperature, solid‐state reaction and their gas‐sensing properties”, Nanotechnology, Vol. 17, pp. 2266‐2270, (2006).
[19] U. Schubert, N. Husing, “Synthesis of inorganic materials”, second, revised and updated edition, ISBN: 978-3-527-31037-1, (2004).
[20] K. Katahira, Y. Kohchi, T. Shimura, and H. Iwahara, “Protonic conduction in Zr-substituted BaCeO3”, Solid State Ionics, Vol. 138, pp. 91-98, (2000).
[21] K. H. Ryu and S. M. Haile, “Chemical stability and proton conductivity of doped BaCeO3-BaZrO3 solid solutions”, Solid State Ionics, Vol. 125, pp. 355-367, (1999).
[22] R. M. German, “Thermodynamics of sintering”, Sintering of Advanced Materials, pp. 3-32, (2010).
[23] D. Kumar, K. Singh, “Effect of Processing Methods and Die Design Parameters on Green Properties of WC–Co Nanopowder Pellets”, Mater. Manuf. Process., Vol. 30, pp. 1329-1341, (2015).
[24] M. Jabbari, R. Bulatova, A.I.Y. Tok, C.R.H. Bahl, E. Mitsoulis, J.H. Hattel, “Ceramic tape casting: a review of current methods and trends with emphasis on rheological behaviour and flow analysis”, Materials Science and Engineering: B, Vol. 212, pp. 39-61, (2016).
[25] J. Shojaeiarani, D. S. Bajwa, N. M. Stark, T. M. Bergholz, A. L. Kraft, “Spin coating method improved the performance characteristics of films obtained from poly(lactic acid) and cellulose nanocrystals”, Sustainable Materials and Technologies, Vol. 26, pp. e00212, (2020).
[26] Y. Pauleau, “Materials Surface Processing by Directed Energy Techniques”, Elsevier, pp.35, (2006).
[27] C.R. Phipps, “Laser Ablation and its Applications”, Springer, pp.67, (2007).
[28] P. R. Willmott and J. R. Huber, “Pulsed laser vaporization and deposition”, Rev. Moder. Phys., Vol. 72, pp. 315, (2000).
[29] M. C. Rao, “Pulsed Laser Deposition - Ablation Mechanism And Applications”, International Journal of Modern Physics: Conference Series, Vol. 22, pp. 355-360, (2013).
[30] A. A. Samat, M. Darus, N. Osman, N. A. Baharuddin, M. Anwar, “A short review on triple conducting oxide cathode materials for proton conducting solid oxide fuel cell”, AIP Conf Proc, Vol. 2339, pp. 020233, (2021).
[31] H.O. Finklea, J. Liu, Y. Yu, M. Yan, H. Abernathy, D. Mersing, D. Keplinger, “Counter electrodes for electrochemical evaluation of LSM electrodes under polarization”, ECS Trans., Vol. 78, pp. 677-688, (2017).
[32] S. Suna, Z. Cheng, “Electrochemical behaviors for Ag, LSCF and BSCF as oxygen electrodes for proton conducting IT-SOFC”, Journal of The Electrochemical Society, Vol. 164, pp. F3104-F3113, (2017).
[33] E. Fabbri, I. Markus, L. Bi, D. Pergolesi, E. Traversa, “Tailoring mixed protonelectronic conductivity of BaZrO3 by y and Pr co-doping for cathode application in protonic SOFCs”, Solid State Ion., Vol. 202, pp. 30-35, (2011).
[34] L. Fan, P.C. Su, “Layer-structured LiNi0.8Co0.2O2: a new triple (H+ / O2- / e- ) conducting cathode for low temperature proton conducting solid oxide fuel cells”, J. Power Sources, Vol. 306, pp.369-377, (2016).
[35] B. Fan, J. Yan, X. Yan, “The ionic conductivity, thermal expansion behavior, and chemical compatibility of La0.54Sr0.44Co0.2Fe0.8O3-δ as SOFC cathode material”, Solid State Sci., Vol. 13, pp. 1835-1839, (2011).
[36] I. Ismail, N.I. Abd Malek, A.M.M. Jani, M.H.D. Othman, N. Osman, “Optimization of La0.6Sr0.4Co0.2Fe0.8O3-α - Ba(Ce0.6Zr0.4)0.9Y0.1O3-δ cathode composition for proton ceramic fuel cell application”, Processing and Application of Ceramics, Vol. 16, pp. 374-383, (2022).
[37] S.-F. Wang, Y.-R. Wang, C.-T. Yeh, Y.-F. Hsu, S.-D. Chyou, W. –T. Lee, “Effects of bi-layer La0.6Sr0.4Co0.2Fe0.8O33-δ-based cathodes on characteristics of intermediate temperature solid oxide fuel cells”, Journal of Power Sources, Vol. 196, pp. 977-987, (2011).
[38] H. Ullmann, N. Trofimenko, F. Tietz, D. Stöver, A. Ahmad-Khanlou, “Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes”, Solid State Ionics, Vol. 138, pp. 79–90, (2000).
[39] D. Xie, K. Li , J. Yang, L. Jia, B. chi, J. Pu, J. Li, “High-performance La0.5(Ba0.75Ca0.25)0.5Co0.8Fe0.2O3-δ cathode for proton-conducting solid oxide fuel cells”, Int J Hydrogen Energy, Vol. 46, pp. 10007-10014, (2021).
[40] A. Weber, E. Ivers-Tiffee, “Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications”, J. Power Sources, Vol. 127, pp. 273-283, (2004).
[41] S. Wang, Y. Jiang, Y. Zhang, J. Yan, W. Li, “Promoting effect of YSZ on the electrochemical performance of YSZ+LSM composite electrodes”, Solid State Ionics, Vol. 113, pp. 291-303, (1998).
[42] Z. Li, Z. Zheng, L. Xu, X. Lu, “A review of the applications of fuel cells in microgrids: opportunities and challenges”, BMC Energy, Vol. 1, (2019).
[43] K. Huang, J. B. Goodenough, “Voltage losses in a solid oxide fuel cell (SOFC)”, Solid Oxide Fuel Cell Technology, (2009).
[44] A. V. Nikonov, K. A. Kuterbekov, K. Zh. Bekmyrza, N. B. Pavzderin, “A brief review of conductivity and thermal expansion of perovskite-related oxides for SOFC cathode”, Eurasian j. phys. funct. mater., Vol. 2, pp.274, (2018).
[45] K.D. Kreuer, “Proton-Conducting Oxides”, Annu. Rev. Mater. Res., Vol. 33, pp. 333-359, (2003).
[46] G. Chiodelli, L. Malavasi, “Electrochemical open circuit voltage (OCV) characterization of SOFC materials”, Ionics, Vol. 19, pp. 1135-1144, (2013).
[47] C. Xiong, J. A. Taillon, C. Pellegrinelli, Y.-L. Huang, L. G. Salamanca-Riba, B. Chi, L. Jian, J. Pu, E. D. Wachsman, “Long-term Cr poisoning effect on LSCF-GDC composite cathodes sintered at different temperatures”, J. Electrochem. Soc., Vol. 163, pp. F1091-F1099, (2016).
[48] C. Yang, W. Li, S. Zhang, L. Bi, R. Peng, C. Chen, W. Liu, “Fabrication and characterization of an anode-supported hollow fiber SOFC”, J. Power Sources, Vol. 187, pp. 90-92, (2009).
[49] D. Cao, M. Zhou, X. Yan, Z. Liu, J. Liu, “High performance low-temperature tubular protonic ceramic fuel cells based on barium cerate-zirconate electrolyte”, Electrochem. commun., Vol. 125, pp. 106986, (2021).
[50] H. Nakajima, T. Kitahara, “Real-Time Electrochemical Impedance Spectroscopy Diagnosis of the Marine Solid Oxide Fuel Cell”, J. Phys. Conf. Ser., Vol. 745, pp. 032149, (2016).
[51] F. Baumann, J. Fleig, H. Habermeier, J. Maier, “Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3−δ model electrodes”, Solid State Ion., Vol. 177, pp. 1071-1081, (2006).
[52] W. Wang, S. P. Jiang, “A mechanistic study on the activation process of (La, Sr)MnO3 electrodes of solid oxide fuel cells”, Solid State Ionics, Vol. 177, pp. 1361-1369, (2006).
[53] M.A. Umer, C.-Y. Cheng, B.-R. Lai, C.-J. Tseng, S.Y. Chen, S.-W. Lee, “Growth of Gd0.3Ca2.7Co3.82Cu0.18O9-δ-BaCe0.6Zr0.2Y0.2O3-δ bulk heterojunction cathode interlayer by pulsed laser deposition for enhancing protonic solid oxide fuel cell performance”, Vol. 638, pp. 158139, (2023).
[54] B.D. White, O. Kesler, “Implications of electronic short circuiting in plasma sprayed solid oxide fuel cells on electrode performance evaluation by electrochemical impedance spectroscopy”, Journal of Power Sources, Vol. 177, pp.104-110, (2008).
[55] 鄭博駿,「提升質子陶瓷燃料電池性能之研究」,國立中央大學,博士論文,民國112年。
[56] 賴泊叡,「自分層電解質之形成於固態氧化物燃料電池之應用研究」,國立中央大學,碩士論文,民國112年。
[57] 戴國瑜,「質子傳輸型固態氧化物燃料電池之水電解電化學性能量測與探討」,國立中央大學,碩士論文,民國113年。
[58] M.A. Umer, C.-Y. Cheng, K.-C. Tsai, C.-J. Tseng, S.Y. Chen, S.-W. Lee, “Intermediate-temperature protonic solid oxide fuel cell made of pulsed laser deposition-based functional layers and interlayers on an optimally tailored anode substrate”, Journal of Power Sources, Vol. 613, pp. 234872, (2024).
[59] D. Sedmidubský, V. Jakeš , O. Jankovský, J. Leitner, Z. Sofer, J. Hejtm ánek, “Phase equilibria in Ca–Co–O system”, Journal of Solid State Chemistry, Vol. 194, pp. 199-205, (2012).
[60] M. Saqib, I.-G. Choi, H. Bae, K. Park, J.-S. Shin, Y.-D. Kim, J.-I. Lee, M. Jo, Y.-C. Kim, K.-S. Lee, S.-J. Song, E.D. Wachsman, J.-Y. Park, “Transition from perovskite to misfit-layered structure materials: a highly oxygen deficient and stable oxygen electrode catalyst”, Energy Environ. Sci., Vol. 14, pp. 2472-2484, (2021). |