博碩士論文 110329022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:145 、訪客IP:18.221.102.63
姓名 鄭承洋(Cheng-Yang Cheng)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 陰極功能層製備技術對質子傳導型固態氧化物燃料電池之性能探討
(Exploration of the Performance of Proton-Conducting Solid Oxide Fuel Cells with Cathode Functional Layer Preparation Techniques)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 質子傳導型固態氧化物燃料電池(Proton-conducting solid oxide fuel cells, P-SOFCs)於500-800 ℃擁有優秀的質子傳導性。但隨著工作溫度降低,使得P-SOFC能夠在較低溫運行,然而工作溫度下降也導致陰極(Oxygen reduction reaction, ORR)反應速率降低,因此如何提高ORR的反應速率尤為重要。
在傳統P-SOFC中,反應位點僅在電解質與陰極的界面,因此需要增加更多的反應位點,將能夠傳遞質子的材料及電子與離子混合導體(Mixed Ionic Electronic Conductor, MIEC)一同製成陰極功能層,便能夠縮短離子需傳遞的距離,並增加三相界面(Triple Phase Boundaries, TPBs),進而降低極化阻抗,提升性能。陰極功能層的加入亦能改善陰極和電解質材料因熱膨脹係數不匹配,在長時間的運行下界面分層的問題。
脈衝雷射沉積(Pulsed laser deposition, PLD)能夠製造出成分高度均勻且一致的薄膜,且成分與靶材的化學劑量比相同。本研究使用PLD技術製備LSCF-BCZYYb陰極功能層,並與旋轉塗佈樣品比較。
結果顯示LSCF與BCZYYb在PLD後會有二次相形成,因而影響性能。在800 °C時,PLD電池的開路電壓(Open circuit voltage, OCV)僅有0.73V,並且600 °C的RH卻小於700 °C的RH,因此認為PLD電池存在短路的問題。旋轉塗佈則無短路問題,隨著溫度降低,熱驅動力下降,RH也隨著增加;RL主要是由於水氣的累積,由於持續運作,造成氣體愈加不易擴散,使得RL上升。由於以PLD製備之電池存在短路問題,無法與旋轉塗佈製備之電池比較,然而從材料分析結果仍可得知,LSCF和BCZYYb在PLD後無法維持其結構,並形成二次相,因此不適用於PLD。
本研究亦統整先前研究之結果,並根據不同參數進行比較。
GCCCO-BCZY透過PLD可製造出均勻一致的薄膜,並形成相互連通的網狀結構,使有效面積顯著提升。旋轉塗佈法因GCCCO和BCZY的燒結溫度限制,顆粒間連結性較差,導致性能不如PLD製備的電池。此外,LSCF和BCZYYb由於在PLD後無法保持原有結構,並形成SrZrO3,因此不適合應用在PLD製程中。
GCCCO作為TCO材料因為可以同時傳輸三種離子,與LSCF相比,更適合作為陰極材料。因此將GCCCO-BCZYYb製備於商用半電池之電池取的優異的表現。然而當將兩者分別作為陰極功能層材料製備於自製半電池上時,LSCF電池性能較高,此結果差異尚待更多資訊來釐清。
自製半電池的電解質晶粒尺寸小,晶界多,並且陽極燒結程度也較高,減少電子傳輸通道及氫氧化反應(Hydrogen oxidation reaction, HOR)面積,導致阻抗值大於使用商用半電池製成之電池。當降低半電池燒結溫度並減少電解質厚度,Ro及Rp下降。因此降低半電池燒結溫度,以及減少晶界數量,並降低電解質厚度,有助於提升電池的性能。
由於乾壓製程中並未添加分散劑及黏結劑等聚合物,其造孔劑分散性較刮刀基板低,導致界面接觸較差,並提高氣體傳輸難度,使Ro及RL增加。採用乾壓法製備陽極基板需提高造孔劑的分散性,或是使用不易團聚的造孔劑。
與澱粉相比,紙纖維形成足夠大且互相連接的圓柱型孔洞,提供氣體傳輸,並增加HOR反應位點的氣體濃度,提高反應速率,進而提高陰極側ORR反應速率,使Rp降低。此結果證明紙纖維較澱粉適合作為陽極之造孔劑使用。
摘要(英) Proton-conducting solid oxide fuel cells (P-SOFCs) exhibit excellent proton conductivity at 500-800 °C. However, as the operating temperature decreases, enabling P-SOFCs to operate at lower temperatures, the oxygen reduction reaction (ORR) rate at the cathode also decreases. Thus, improving the ORR reaction rate is particularly important.
In traditional P-SOFCs, the reaction sites are only at the interface between the electrolyte and the cathode. Therefore, by incorporating proton-conducting materials into the cathode functional layer together with mixed ionic-electronic conductors (MIECs) to add more reaction sites, the ion transmission distance can be shortened and the three-phase boundaries (TPBs) can be increased. Thereby reducing polarization resistance and improving performance. Adding a cathode functional layer can also improve the interfacial delamination problem due to the mismatch of thermal expansion coefficients between the cathode and electrolyte materials during long-term operation.
Pulsed laser deposition (PLD) can produce highly uniform and consistent thin films, maintaining the same chemical stoichiometry as the target material. This study uses PLD technology to fabricate LSCF-BCZYYb cathode functional layers and compares them with samples prepared by spin coating.
The results show that a secondary phase forms in LSCF and BCZYYb after PLD, which affects performance. At 800 °C, the open circuit voltage (OCV) of the PLD cell is only 0.73V, and the higher-frequency polarization resistance (RH) at 600 °C is less than that at 700 °C, indicating a short-circuit issue in the PLD cell. The spin-coated cell does not have short-circuit problems. As the temperature decreases, the thermal driving force decreases, and RH increases. The RL mainly results from water vapor accumulation; continuous operation makes gas diffusion increasingly difficult, leading to an increase in RL. Due to the short-circuit issue in the PLD-prepared cell, it cannot be compared with the spin-coated cell. However, material analysis still indicates that LSCF and BCZYYb cannot maintain their structure after PLD and form a secondary phase, making them unsuitable for PLD.
This study also compiles the results of previous research and compares them based on different parameters.
GCCCO-BCZY, fabricated through PLD, produces conformal and coherent films and forms an interconnected network structure, significantly increasing the effective area. In contrast, the spin coating method results in poorer particle connectivity due to the sintering temperature limitations of GCCCO and BCZY, leading to lower performance compared to PLD-fabricated cells. Additionally, LSCF and BCZYYb, unable to maintain their original structure after PLD and forming SrZrO3, are not suitable for application in the PLD process.
As a TCO material, GCCCO can transport three types of ions simultaneously, making it more suitable as a cathode material compared to LSCF. Therefore, GCCCO-BCZYYb, when fabricated into commercial half-cells, exhibits excellent performance. However, when these two materials were used separately as cathode functional layer materials in in-house half-cell, the LSCF battery showed higher performance. This discrepancy requires further information to be clarified.
The grain size of electrolyte in in-house half-cells is small with many grain boundaries, and the anode has a higher degree of sintering, reducing electron transport pathways and hydrogen oxidation reaction (HOR) areas, leading to higher impedance values compared to cells made from commercial half-cells. Reducing the sintering temperature of the half-cells and decreasing the electrolyte thickness lower Ro and Rp. Therefore, reducing the sintering temperature of the half-cells, decreasing the amount of grain boundaries, and reducing electrolyte thickness help improve cell performance.
Due to the absence of dispersants and binders in the dry pressing process, the pore former dispersion is lower than that of the tape casting substrates, resulting in poorer interfacial contact and increased gas transport difficulty, thus increasing Ro and RL. Enhancing the dispersion of the pore former or using a pore former that is less prone to agglomeration is necessary for preparing anode substrates using the dry pressing method.
Compared to starch, paper fibers form sufficiently large and interconnected cylindrical pores, providing gas transport and increasing gas concentration at HOR reaction sites, thereby improving reaction rates and ORR reaction rates at the cathode side, reducing Rp. This result demonstrates that paper fibers are more suitable as a pore former for the anode compared to starch.
關鍵字(中) ★ 脈衝雷射沉積
★ 陰極功能層
★ 質子傳導型固態氧化物燃料電池
關鍵字(英) ★ pulsed laser deposition
★ cathode functional layer
★ proton-conducting solid oxide fuel cell
論文目次 摘要 i
Abstract iv
致謝 vii
目錄 viii
圖目錄 xi
表目錄 xiv
第一章 前言 1
第二章 文獻回顧 3
2.1. SOFC簡介 3
2.1.1. SOFC電池之工作原理 3
2.1.2. SOFC電池之結構 6
2.2. 鈣鈦礦之結構與性質 9
2.3. 電解質合成與燒結 11
2.3.1. 電解質合成方法 11
2.3.2. 電解質燒結理論 11
2.4. SOFC電池製作 13
2.4.1. 電池乾壓成型 13
2.4.2. 電池刮刀成型 13
2.4.3. 電池旋轉塗佈 14
2.4.4. 脈衝雷射沉積(PLD) 15
2.5. 陰極材料及工作原理 15
2.5.1. 陰極傳導機制 15
2.5.2. 陰極傳輸機制 18
2.5.3. 陰極優化 18
2.6. 電化學分析機制 19
2.6.1. 極化曲線工作原理 19
2.6.2. 阻抗頻譜工作原理 21
2.6.3. 擬合等效電路工作原理 23
2.7. 研究動機及目的 24
第三章 實驗方法 25
3.1. 實驗藥品 25
3.2. 實驗方法與流程 26
3.2.1. PLD靶材製備 26
3.2.2. 全電池製備 26
3.3. 材料分析儀器 28
3.3.1. X光粉末繞射儀(X-ray powder diffraction, XRD) 28
3.3.2. 掃描式電子顯微鏡(Scanning electron microscopy, SEM) 29
3.4. 全電池I-V性能之測量步驟 30
3.5. 阻抗頻譜之測量步驟 30
第四章 實驗結果與討論 31
4.1. 全電池材料之相分析 31
4.2. 陰極功能層之表面分析 32
4.3. 全電池性能之分析 33
4.4. 全電池阻抗之分析 35
4.5. 過去成果之比較與討論 38
4.5.1. 陰極功能層製備方法之差異 41
4.5.2. 陰極功能層材料之差異 43
4.5.3. 半電池之差異 46
4.5.4. 陽極基板製備方法之差異 51
4.5.5. 陽極造孔劑之差異 53
第五章 結論 55
參考文獻 58
參考文獻 [1] S. Iida, K. Sakata, “Hydrogen technologies and developments in Japan”, Clean Energy, Vol. 3, pp. 105-113, (2019).
[2] J. Moore, B. Shabani, “A Critical Study of Stationary Energy Storage Policies in Australia in an International Context: The Role of Hydrogen and Battery Technologies”, Energies, Vol. 9, pp. 674, (2016).
[3] M. Götz, J. Lefebvre, F. Mörs, A. M. Koch, F. Graf, S. Bajohr, R. Reimert, T. Kolb, “Renewable Power-to-Gas: A technological and economic review”, Renew. Energ., Vol. 85, pp. 1371-1390, (2016).
[4] C. Duan, R. Kee, H. Zhu, N. Sullivan, L. Zhu, L. Bian, D. Jennings, R. O’Hayre, “Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production”, Nat. Energy, Vol. 4, pp. 230-240, (2019).
[5] L. Barelli, G. Bidini, G. Cinti, “Airflow Management in Solid Oxide Electrolyzer (SOE) Operation: Performance Analysis”, Chem. Eng., Vol 1, pp. 13, (2017).
[6] O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, S. Few, “Future cost and performance of water electrolysis: An expert elicitation study”, Int. J. Hydrog. Energy, Vol. 42, pp. 30470-30492, (2017).
[7] A. D′Epifanio, E. Fabbri, E. D. Bartolomeo, S. Licoccia, E. Traversa, “Design of BaZr0.8Y0.2O3–δ Protonic Conductor to Improve the Electrochemical Performance in Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs)”, Fuel Cells, Vol. 8, pp. 69, (2008).
[8] F. Iguchi, N. Sata, H. Yugami, “Proton transport properties at the grain boundary of barium zirconate based proton conductors for intermediate temperature operating SOFC”, J. Mater. Chem., Vol. 20, pp. 6265, (2010).
[9] F. Iguchi, N. Sata, H. Yugami, “Proton transport properties at the grain boundary of barium zirconate based proton conductors for intermediate temperature operating SOFC”, J. Mater. Chem., Vol. 20, pp. 6265, (2010).
[10] E Fabbri, L Bi, D Pergolesi, E Traversa, “Towards the Next Generation of Solid Oxide Fuel Cells Operating Below 600 °C with Chemically Stable Proton-Conducting Electrolytes”, Adv. Mater., Vol. 24, pp. 195-208, (2012).
[11] E. Fabbri, D. Pergolesi, E. Traversa, “Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells”, Sci Technol Adv Mater, Vol. 11, pp. 044301, (2010).
[12] W. Q, J. Hou, Y. Y. Fan, X. Xi, J. Li, Y. Lu, G. Huo, L. Shao, X. Z. Fu, J. L. Luo, “Pr2BaNiMnO7−δ double-layered Ruddlesden–Popper perovskite oxides as efficient cathode electrocatalysts for low temperature proton conducting solid oxide fuel cells”, J. Mater. Chem. A, Vol. 8, pp. 7704, (2020).
[13] Z. Wang, N. Zhang, J. Qiao, K. Sun, P. Xu, “Improved SOFC performance with continuously graded anode functional layer”, Electrochem. commun., Vol. 11, pp. 1120, (2009).
[14] L. Malavasi, C. A. Fisher, M. S. Islam, “Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features”, Chem Soc Rev, Vol. 39, pp. 4370, (2010).
[15] B.A. Boukamp, “The amazing perovskite anode”, Nature Materials, Vol. 2, pp. 294-296, (2003).
[16] I. Dincer, C.O. Colpa, “Introduction to stationary fuel cells. Solid Oxide Fuel Cells, The Royal Society of Chemistry, pp. 1–25, (2013).
[17] W. Zhang, Y. H. Hu, “Progress in proton‐conducting oxides as electrolytes for low‐temperature solid oxide fuel cells: From materials to devices”, Energy Sci. Eng., Vol. 9, pp. 984-1011, (2021).
[18] Z.‐P. Sun, L. Liu, L. Zhang, D.-Z. Jia, “Rapid synthesis of ZnO nano‐ rods by one‐step, room‐temperature, solid‐state reaction and their gas‐sensing properties”, Nanotechnology, Vol. 17, pp. 2266‐2270, (2006).
[19] U. Schubert, N. Husing, “Synthesis of inorganic materials”, second, revised and updated edition, ISBN: 978-3-527-31037-1, (2004).
[20] K. Katahira, Y. Kohchi, T. Shimura, and H. Iwahara, “Protonic conduction in Zr-substituted BaCeO3”, Solid State Ionics, Vol. 138, pp. 91-98, (2000).
[21] K. H. Ryu and S. M. Haile, “Chemical stability and proton conductivity of doped BaCeO3-BaZrO3 solid solutions”, Solid State Ionics, Vol. 125, pp. 355-367, (1999).
[22] R. M. German, “Thermodynamics of sintering”, Sintering of Advanced Materials, pp. 3-32, (2010).
[23] D. Kumar, K. Singh, “Effect of Processing Methods and Die Design Parameters on Green Properties of WC–Co Nanopowder Pellets”, Mater. Manuf. Process., Vol. 30, pp. 1329-1341, (2015).
[24] M. Jabbari, R. Bulatova, A.I.Y. Tok, C.R.H. Bahl, E. Mitsoulis, J.H. Hattel, “Ceramic tape casting: a review of current methods and trends with emphasis on rheological behaviour and flow analysis”, Materials Science and Engineering: B, Vol. 212, pp. 39-61, (2016).
[25] J. Shojaeiarani, D. S. Bajwa, N. M. Stark, T. M. Bergholz, A. L. Kraft, “Spin coating method improved the performance characteristics of films obtained from poly(lactic acid) and cellulose nanocrystals”, Sustainable Materials and Technologies, Vol. 26, pp. e00212, (2020).
[26] Y. Pauleau, “Materials Surface Processing by Directed Energy Techniques”, Elsevier, pp.35, (2006).
[27] C.R. Phipps, “Laser Ablation and its Applications”, Springer, pp.67, (2007).
[28] P. R. Willmott and J. R. Huber, “Pulsed laser vaporization and deposition”, Rev. Moder. Phys., Vol. 72, pp. 315, (2000).
[29] M. C. Rao, “Pulsed Laser Deposition - Ablation Mechanism And Applications”, International Journal of Modern Physics: Conference Series, Vol. 22, pp. 355-360, (2013).
[30] A. A. Samat, M. Darus, N. Osman, N. A. Baharuddin, M. Anwar, “A short review on triple conducting oxide cathode materials for proton conducting solid oxide fuel cell”, AIP Conf Proc, Vol. 2339, pp. 020233, (2021).
[31] H.O. Finklea, J. Liu, Y. Yu, M. Yan, H. Abernathy, D. Mersing, D. Keplinger, “Counter electrodes for electrochemical evaluation of LSM electrodes under polarization”, ECS Trans., Vol. 78, pp. 677-688, (2017).
[32] S. Suna, Z. Cheng, “Electrochemical behaviors for Ag, LSCF and BSCF as oxygen electrodes for proton conducting IT-SOFC”, Journal of The Electrochemical Society, Vol. 164, pp. F3104-F3113, (2017).
[33] E. Fabbri, I. Markus, L. Bi, D. Pergolesi, E. Traversa, “Tailoring mixed protonelectronic conductivity of BaZrO3 by y and Pr co-doping for cathode application in protonic SOFCs”, Solid State Ion., Vol. 202, pp. 30-35, (2011).
[34] L. Fan, P.C. Su, “Layer-structured LiNi0.8Co0.2O2: a new triple (H+ / O2- / e- ) conducting cathode for low temperature proton conducting solid oxide fuel cells”, J. Power Sources, Vol. 306, pp.369-377, (2016).
[35] B. Fan, J. Yan, X. Yan, “The ionic conductivity, thermal expansion behavior, and chemical compatibility of La0.54Sr0.44Co0.2Fe0.8O3-δ as SOFC cathode material”, Solid State Sci., Vol. 13, pp. 1835-1839, (2011).
[36] I. Ismail, N.I. Abd Malek, A.M.M. Jani, M.H.D. Othman, N. Osman, “Optimization of La0.6Sr0.4Co0.2Fe0.8O3-α - Ba(Ce0.6Zr0.4)0.9Y0.1O3-δ cathode composition for proton ceramic fuel cell application”, Processing and Application of Ceramics, Vol. 16, pp. 374-383, (2022).
[37] S.-F. Wang, Y.-R. Wang, C.-T. Yeh, Y.-F. Hsu, S.-D. Chyou, W. –T. Lee, “Effects of bi-layer La0.6Sr0.4Co0.2Fe0.8O33-δ-based cathodes on characteristics of intermediate temperature solid oxide fuel cells”, Journal of Power Sources, Vol. 196, pp. 977-987, (2011).
[38] H. Ullmann, N. Trofimenko, F. Tietz, D. Stöver, A. Ahmad-Khanlou, “Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes”, Solid State Ionics, Vol. 138, pp. 79–90, (2000).
[39] D. Xie, K. Li , J. Yang, L. Jia, B. chi, J. Pu, J. Li, “High-performance La0.5(Ba0.75Ca0.25)0.5Co0.8Fe0.2O3-δ cathode for proton-conducting solid oxide fuel cells”, Int J Hydrogen Energy, Vol. 46, pp. 10007-10014, (2021).
[40] A. Weber, E. Ivers-Tiffee, “Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications”, J. Power Sources, Vol. 127, pp. 273-283, (2004).
[41] S. Wang, Y. Jiang, Y. Zhang, J. Yan, W. Li, “Promoting effect of YSZ on the electrochemical performance of YSZ+LSM composite electrodes”, Solid State Ionics, Vol. 113, pp. 291-303, (1998).
[42] Z. Li, Z. Zheng, L. Xu, X. Lu, “A review of the applications of fuel cells in microgrids: opportunities and challenges”, BMC Energy, Vol. 1, (2019).
[43] K. Huang, J. B. Goodenough, “Voltage losses in a solid oxide fuel cell (SOFC)”, Solid Oxide Fuel Cell Technology, (2009).
[44] A. V. Nikonov, K. A. Kuterbekov, K. Zh. Bekmyrza, N. B. Pavzderin, “A brief review of conductivity and thermal expansion of perovskite-related oxides for SOFC cathode”, Eurasian j. phys. funct. mater., Vol. 2, pp.274, (2018).
[45] K.D. Kreuer, “Proton-Conducting Oxides”, Annu. Rev. Mater. Res., Vol. 33, pp. 333-359, (2003).
[46] G. Chiodelli, L. Malavasi, “Electrochemical open circuit voltage (OCV) characterization of SOFC materials”, Ionics, Vol. 19, pp. 1135-1144, (2013).
[47] C. Xiong, J. A. Taillon, C. Pellegrinelli, Y.-L. Huang, L. G. Salamanca-Riba, B. Chi, L. Jian, J. Pu, E. D. Wachsman, “Long-term Cr poisoning effect on LSCF-GDC composite cathodes sintered at different temperatures”, J. Electrochem. Soc., Vol. 163, pp. F1091-F1099, (2016).
[48] C. Yang, W. Li, S. Zhang, L. Bi, R. Peng, C. Chen, W. Liu, “Fabrication and characterization of an anode-supported hollow fiber SOFC”, J. Power Sources, Vol. 187, pp. 90-92, (2009).
[49] D. Cao, M. Zhou, X. Yan, Z. Liu, J. Liu, “High performance low-temperature tubular protonic ceramic fuel cells based on barium cerate-zirconate electrolyte”, Electrochem. commun., Vol. 125, pp. 106986, (2021).
[50] H. Nakajima, T. Kitahara, “Real-Time Electrochemical Impedance Spectroscopy Diagnosis of the Marine Solid Oxide Fuel Cell”, J. Phys. Conf. Ser., Vol. 745, pp. 032149, (2016).
[51] F. Baumann, J. Fleig, H. Habermeier, J. Maier, “Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3−δ model electrodes”, Solid State Ion., Vol. 177, pp. 1071-1081, (2006).
[52] W. Wang, S. P. Jiang, “A mechanistic study on the activation process of (La, Sr)MnO3 electrodes of solid oxide fuel cells”, Solid State Ionics, Vol. 177, pp. 1361-1369, (2006).
[53] M.A. Umer, C.-Y. Cheng, B.-R. Lai, C.-J. Tseng, S.Y. Chen, S.-W. Lee, “Growth of Gd0.3Ca2.7Co3.82Cu0.18O9-δ-BaCe0.6Zr0.2Y0.2O3-δ bulk heterojunction cathode interlayer by pulsed laser deposition for enhancing protonic solid oxide fuel cell performance”, Vol. 638, pp. 158139, (2023).
[54] B.D. White, O. Kesler, “Implications of electronic short circuiting in plasma sprayed solid oxide fuel cells on electrode performance evaluation by electrochemical impedance spectroscopy”, Journal of Power Sources, Vol. 177, pp.104-110, (2008).
[55] 鄭博駿,「提升質子陶瓷燃料電池性能之研究」,國立中央大學,博士論文,民國112年。
[56] 賴泊叡,「自分層電解質之形成於固態氧化物燃料電池之應用研究」,國立中央大學,碩士論文,民國112年。
[57] 戴國瑜,「質子傳輸型固態氧化物燃料電池之水電解電化學性能量測與探討」,國立中央大學,碩士論文,民國113年。
[58] M.A. Umer, C.-Y. Cheng, K.-C. Tsai, C.-J. Tseng, S.Y. Chen, S.-W. Lee, “Intermediate-temperature protonic solid oxide fuel cell made of pulsed laser deposition-based functional layers and interlayers on an optimally tailored anode substrate”, Journal of Power Sources, Vol. 613, pp. 234872, (2024).
[59] D. Sedmidubský, V. Jakeš , O. Jankovský, J. Leitner, Z. Sofer, J. Hejtm ánek, “Phase equilibria in Ca–Co–O system”, Journal of Solid State Chemistry, Vol. 194, pp. 199-205, (2012).
[60] M. Saqib, I.-G. Choi, H. Bae, K. Park, J.-S. Shin, Y.-D. Kim, J.-I. Lee, M. Jo, Y.-C. Kim, K.-S. Lee, S.-J. Song, E.D. Wachsman, J.-Y. Park, “Transition from perovskite to misfit-layered structure materials: a highly oxygen deficient and stable oxygen electrode catalyst”, Energy Environ. Sci., Vol. 14, pp. 2472-2484, (2021).
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明