參考文獻 |
[1] C. Chang, K. Bang, G. Wetzstein, B. Lee, and L. Gao, “ Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective,” Optica 7(11), 1563-1578 (2020).
[2] M. Billinghurst, and H. Kato, “Collaborative mixed reality,” presented at the International Symposium on Mixed Reality, Yokohama, Japan, 19-21 March 1999.
[3] R. T. Azuma, “A survey of augmented reality,” Presence: teleoperators & virtual environments 6(4), 355-385 (1997).
[4] M. Speicher, B. D. Hall, and M. Nebeling, “What is mixed reality?,” presented at CHI conference on human factors in computing systems, Glasgow Scotland, Uk, 4-9 May 2019.
[5] “What′s the difference between AR, VR and MR?,” https://vrata.club/en/blog/v-cem-raznica-mezdu-ar-vr-i-mr.
[6] C. Alex, “AR/VR 顯示器螢幕,” https://medium.com/@chuangalex/ar-vr-%E9%A1%AF%E7%A4%BA%E5%99%A8%E8%9E%A2%E5%B9%95-10f6fc05c1a1.
[7] H. Strasburger, “Seven Myths on Crowding and Peripheral Vision,” i-Perception 11(3), (2020).
[8] G. Evans, J. Miller, M. I. Pena, A. MacAllister, and E. Winer, Evaluating the Microsoft HoloLens through an augmented reality assembly application, (SPIE, Anaheim, CA, United States, 2017).
[9] 圖學玩家, “淺談AR黑科技:光波導,” https://medium.com/@tonytsai225/%E6%B7%BA%E8%AB%87ar%E9%BB%91%E7%A7%91%E6%8A%80-%E5%85%89%E6%B3%A2%E5%B0%8E-685cf8fad3de.
[10] Z. Shen, Y. Zhang, A. Liu, Y. Weng, and X. Li, “Volume holographic waveguide display with large field of view using a Au-NPs dispersed acrylate-based photopolymer,” Opt. Mater. Express 10(2), 312-322 (2020).
[11] J. Marín-Sáez, J. Atencia, D. Chemisana, and M. Collados, “Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications,” Opt. Express 24(6), A720–A730 (2016).
[12] F. Bruder, T. Fäcke, and T. Rölle, “The Chemistry and Physics of Bayfol HX Film Holographic Photopolymer,” Polymers 9(12), 472 (2017).
[13] O. V. Sakhno, L. M. Goldenberg, J. Stumpe, and T. N. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18(10), 105704 (2007).
[14] Y. Tomita, N. Suzuki, and K. Chikama, “Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers,” Opt. Lett. 30(8), 839–841 (2005).
[15] N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express 14(26), 12712–12719 (2006).
[16] W. S. Kim, Y. Jeong, and J. Park, “Nanoparticle-induced refractive index modulation of organic-inorganic hybrid photopolymer,” Opt. Express 14(20), 8967–8973 (2006).
[17] C. Li, L. Cao, Z. Wang, and G. Jin, “Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer,” Opt. Lett. 39(24), 6891–6894 (2014).
[18] C. Li, L. Cao, Q. He, and G. Jin, “Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer,” Opt. Express 22(5), 5017–5028 (2014).
[19] Y. Liu, F. Fan, Y. Hong, J. Zang, G. Kang, and X. Tan, “Volume holographic recording in Irgacure 784-doped PMMA photopolymer,” Opt. Express 25(17), 20654–20662 (2017).
[20] V. A. Barachevsky, “The current status of the development of light-sensitive media for holography (a Review),” Opt. Spectrosc. 124(3), 373–407 (2018).
[21] G. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23(16), 1310–1312 (1998).
[22] R. Malallah, H. Li, D. P. Kelly, J. J. Healy, and J. T. Sheridan, “A review of hologram storage and self-written waveguides formation in photopolymer media,” Polymers 9(8), 337 (2017).
[23] 劉政銓,具有角度放大功能之近眼顯示器全像光導,國立中央大學光電科學研究所碩士論文,中華民國一百一十二年。
[24] D. Gabor, “A new Microscopic principle,” Nature 161, 777-78 (1948).
[25] D. Gabor, and P. Sciences, “Microscopy by reconstructed wave-fronts,” Proceedings of the Royal Society A 197, 454-487 (1949).
[26] E. N. Leith, J. Upatnieks, and K. A. Haines, “Microscopy by wavefront reconstruction,” JOSA 55(8), 981-986 (1965).
[27] Y. S. Cheng, Z. F. Chen, and C. H. Chen, “Virtual-image generation in 360-degree viewable image-plane disk-type multiplex holography,” Opt. Express 21(8), 10301-10313 (2013).
[28] M. B. Klein, Photorefractive properties of BaTiO3, Günter, P., Huignard, JP. eds. (Springer Berlin, Heidelberg, 1988).
[29] W.R. Klein, “Theoretical efficiency of Bragg devices,” Proceedings of the IEEE 54(5), 803-804 (1966).
[30] J. W. Goodman, Introduction to Fourier Optics, 3rd eds. (McGraw Hill, New York, 2002).
[31] A. Yariv, and P. Yeh, Optical waves in crystals, 1st eds. (John Wiley, New York, 1984).
[32] P. Yeh, Introduction to photorefractive nonlinear optics, 1st eds. (Wiley-Interscience, 1993).
[33] H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell System Technical Journal 48(9), 2909-2947 (1969).
[34] K. Hong, J. Yeom, C. Jang, J. Hong, and B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. Lett. 39(1), 127-130 (2014).
[35] M. D. Missig, and G. M. Morris, “Diffractive optics applied to eyepiece design,” Appl. Opt. 34(14), 2452-2461 (1995).
[36] C. Londono, W. T. Plummer, and P. P. J. A. o. Clark, “Athermalization of a single-component lens with diffractive optics,” Appl. Opt. 32(13), 2295-2302 (1993).
[37] C. C. Sun, T. C. Teng, and Y. W. Yu, “One-dimensional optical imaging with a volume holographic optical element,” Opt. Lett. 30, 1132-1134 (2005). |