博碩士論文 111226076 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:176 、訪客IP:18.227.79.64
姓名 吳尉齊(Wei-Chi Wu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 用於近眼顯示器的視角放大透鏡陣列
(Field-of-view Extension Array of Near Eye Display)
相關論文
★ 氮化鋁鎵深紫外光發光二極體高光效之封裝研究★ 歐規之高對比度近遠燈設計與雜散光分析
★ 精準色彩取像與顯示系統之設計與製作★ 符合多種道路路面需求之通用型路燈設計
★ 利用編碼孔徑之高亮度高光譜成像系統★ 應用DMD提高幀率之數位光學相位共軛投影系統之研究
★ 應用四步相移解碼多階相位之消除碟片位移雜訊之研究★ 費奈爾透鏡之光學效率與雜散光分析
★ 用於牙齒頻譜的多點量測之高光譜系統★ 結合全像光學元件的微型化數位全像顯微鏡
★ 隨讀取位置改變之多頁繞射疊加訊號之相位誤差容忍度分析★ 多波繞射疊加訊號法之參考光位置誤差分析
★ 使用方解石於數位全像顯微系統的深度測量系統★ 陣列式燈具光學特性快速量測之研究
★ 使用透鏡陣列做為屏幕之數位光學相位共軛投影系統與適應性光學優化之研究★ 使用體積全像光學波導之可變焦無透鏡數位全像顯微鏡
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-1以後開放)
摘要(中) 近年來由於近眼顯示器(Near-Eye Display,NED)技術的發展趨於成熟,許多公司紛紛推出相關應用產品,近眼顯示器的視角(Field of View,FOV)為評斷近眼顯示器的重要指標,本論文主要利用球面波前紀錄的體積全像片達到視角放大的效果,並配合透鏡陣列(Lens Array)的技術,實現在增加顯示器視角的同時增加眼盒(eye-box),此技術可用於可視穿型混合實境(Mixed Reality,MR)顯示器以增加顯示器的可視範圍。
在此類顯示器當中,光導(Light Guide)扮演將影像傳遞的功能,利用透鏡的成像原理,在光導玻璃上設計可以讓光導系統輸出的影像具有視角放大功能的體積全像透鏡系統,改變體積全像片在記錄光波干涉條紋時球面波前的焦距,進而產生不同的視角放大倍率,再將同樣的體積全像透鏡系統依照等間距的方式製作成體積全像透鏡陣列,以增加眼盒。
在光導玻璃上利用體積全像片製作而成的光導系統和在光導玻璃上製作微透鏡結構相比,具有體積小、重量輕等優點,讓使用者在配戴近眼顯示器時可以有更優質的使用體驗。
摘要(英) In recent years, as Near-Eye Display (NED) technology has matured, many companies have launched related products. The Field of View (FOV) is a crucial metric for evaluating NEDs. This thesis primarily utilizes volume holograms recorded with spherical wavefronts to achieve FOV extension. Additionally, by incorporating lens array technology, it aims to increase the eye-box while expanding the display′s FOV. This technology can be applied to see-through Mixed Reality (MR) displays to enhance the visible range of the display.
In such displays, light guides play a critical role in image transmission. Using the imaging principle of lenses, a volume holographic lens system is designed on light guide glass to provide FOV extension functionality. By altering the focal length of the spherical wavefronts when recording the interference fringes of the volume holograms, different FOV extension magnifications are produced. The same volume holographic lens systems are then fabricated into volume holographic lens arrays at regular intervals to increase the eye-box.
Compared to micro-lens structures on light guide glass, light guide systems made using volume holograms have advantages such as smaller size and lighter weight. This ensures a superior user experience when wearing near-eye displays.
關鍵字(中) ★ 全像術
★ 視角放大
★ 透鏡陣列
關鍵字(英) ★ holography
★ Field-of-view Extension
★ lens array
論文目次 目錄
摘要 …………………………………………………………………………i
Abstract ………………………………………………………………………...ii
致謝 ………………………………………………………………………..iii
目錄 ………………………………………………………………………..iv
圖目錄 ……………………………………………………………………….vi
表目錄 ………………………………………………………………………..x
第一章 緒論 1
1-1 引言 1
1-2 研究動機 2
1-3 FOV擴展的方法 3
1-4 前置研究 5
1-5 論文架構 5
第二章 基礎原理 6
2-1 全像術 6
2-2 薄全像與厚全像 8
2-3 布拉格條件 10
2-4 耦合波理論 13
2-5 相位疊加法 22
第三章 視角放大透鏡陣列系統 30
3-1 視角放大光導系統設計 30
3-2 全像透鏡系統成像與視角放大率 32
3-3 全像透鏡陣列設計 34
3-4 影像重建架構 37
3-5 全像透鏡拍攝架構 38
3-6 全像透鏡陣列拍攝架構 44
第四章 實驗結果 48
4-1 視角放大理論計算 48
4-2 視角放大實驗結果 52
4-3 eye-box與透鏡陣列 59
4-4 視角放大透鏡陣列實驗結果 63
4-5 影像品質分析 74
4-6 可視穿效果 79
第五章 總結 83
參考資料 ………………………………………………………………………85
中英文名詞對照表 88
參考文獻 [1] C. Chang, K. Bang, G. Wetzstein, B. Lee, and L. Gao, “ Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective,” Optica 7(11), 1563-1578 (2020).
[2] M. Billinghurst, and H. Kato, “Collaborative mixed reality,” presented at the International Symposium on Mixed Reality, Yokohama, Japan, 19-21 March 1999.
[3] R. T. Azuma, “A survey of augmented reality,” Presence: teleoperators & virtual environments 6(4), 355-385 (1997).
[4] M. Speicher, B. D. Hall, and M. Nebeling, “What is mixed reality?,” presented at CHI conference on human factors in computing systems, Glasgow Scotland, Uk, 4-9 May 2019.
[5] “What′s the difference between AR, VR and MR?,” https://vrata.club/en/blog/v-cem-raznica-mezdu-ar-vr-i-mr.
[6] C. Alex, “AR/VR 顯示器螢幕,” https://medium.com/@chuangalex/ar-vr-%E9%A1%AF%E7%A4%BA%E5%99%A8%E8%9E%A2%E5%B9%95-10f6fc05c1a1.
[7] H. Strasburger, “Seven Myths on Crowding and Peripheral Vision,” i-Perception 11(3), (2020).
[8] G. Evans, J. Miller, M. I. Pena, A. MacAllister, and E. Winer, Evaluating the Microsoft HoloLens through an augmented reality assembly application, (SPIE, Anaheim, CA, United States, 2017).
[9] 圖學玩家, “淺談AR黑科技:光波導,” https://medium.com/@tonytsai225/%E6%B7%BA%E8%AB%87ar%E9%BB%91%E7%A7%91%E6%8A%80-%E5%85%89%E6%B3%A2%E5%B0%8E-685cf8fad3de.
[10] Z. Shen, Y. Zhang, A. Liu, Y. Weng, and X. Li, “Volume holographic waveguide display with large field of view using a Au-NPs dispersed acrylate-based photopolymer,” Opt. Mater. Express 10(2), 312-322 (2020).
[11] J. Marín-Sáez, J. Atencia, D. Chemisana, and M. Collados, “Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications,” Opt. Express 24(6), A720–A730 (2016).
[12] F. Bruder, T. Fäcke, and T. Rölle, “The Chemistry and Physics of Bayfol HX Film Holographic Photopolymer,” Polymers 9(12), 472 (2017).
[13] O. V. Sakhno, L. M. Goldenberg, J. Stumpe, and T. N. Smirnova, “Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology 18(10), 105704 (2007).
[14] Y. Tomita, N. Suzuki, and K. Chikama, “Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers,” Opt. Lett. 30(8), 839–841 (2005).
[15] N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express 14(26), 12712–12719 (2006).
[16] W. S. Kim, Y. Jeong, and J. Park, “Nanoparticle-induced refractive index modulation of organic-inorganic hybrid photopolymer,” Opt. Express 14(20), 8967–8973 (2006).
[17] C. Li, L. Cao, Z. Wang, and G. Jin, “Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer,” Opt. Lett. 39(24), 6891–6894 (2014).
[18] C. Li, L. Cao, Q. He, and G. Jin, “Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer,” Opt. Express 22(5), 5017–5028 (2014).
[19] Y. Liu, F. Fan, Y. Hong, J. Zang, G. Kang, and X. Tan, “Volume holographic recording in Irgacure 784-doped PMMA photopolymer,” Opt. Express 25(17), 20654–20662 (2017).
[20] V. A. Barachevsky, “The current status of the development of light-sensitive media for holography (a Review),” Opt. Spectrosc. 124(3), 373–407 (2018).
[21] G. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23(16), 1310–1312 (1998).
[22] R. Malallah, H. Li, D. P. Kelly, J. J. Healy, and J. T. Sheridan, “A review of hologram storage and self-written waveguides formation in photopolymer media,” Polymers 9(8), 337 (2017).
[23] 劉政銓,具有角度放大功能之近眼顯示器全像光導,國立中央大學光電科學研究所碩士論文,中華民國一百一十二年。
[24] D. Gabor, “A new Microscopic principle,” Nature 161, 777-78 (1948).
[25] D. Gabor, and P. Sciences, “Microscopy by reconstructed wave-fronts,” Proceedings of the Royal Society A 197, 454-487 (1949).
[26] E. N. Leith, J. Upatnieks, and K. A. Haines, “Microscopy by wavefront reconstruction,” JOSA 55(8), 981-986 (1965).
[27] Y. S. Cheng, Z. F. Chen, and C. H. Chen, “Virtual-image generation in 360-degree viewable image-plane disk-type multiplex holography,” Opt. Express 21(8), 10301-10313 (2013).
[28] M. B. Klein, Photorefractive properties of BaTiO3, Günter, P., Huignard, JP. eds. (Springer Berlin, Heidelberg, 1988).
[29] W.R. Klein, “Theoretical efficiency of Bragg devices,” Proceedings of the IEEE 54(5), 803-804 (1966).
[30] J. W. Goodman, Introduction to Fourier Optics, 3rd eds. (McGraw Hill, New York, 2002).
[31] A. Yariv, and P. Yeh, Optical waves in crystals, 1st eds. (John Wiley, New York, 1984).
[32] P. Yeh, Introduction to photorefractive nonlinear optics, 1st eds. (Wiley-Interscience, 1993).
[33] H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell System Technical Journal 48(9), 2909-2947 (1969).
[34] K. Hong, J. Yeom, C. Jang, J. Hong, and B. Lee, “Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality,” Opt. Lett. 39(1), 127-130 (2014).
[35] M. D. Missig, and G. M. Morris, “Diffractive optics applied to eyepiece design,” Appl. Opt. 34(14), 2452-2461 (1995).
[36] C. Londono, W. T. Plummer, and P. P. J. A. o. Clark, “Athermalization of a single-component lens with diffractive optics,” Appl. Opt. 32(13), 2295-2302 (1993).
[37] C. C. Sun, T. C. Teng, and Y. W. Yu, “One-dimensional optical imaging with a volume holographic optical element,” Opt. Lett. 30, 1132-1134 (2005).
指導教授 余業緯(Yeh-Wei Yu) 審核日期 2024-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明