參考文獻 |
[1] M.S. Yesupatham, B. Honnappa, N. Agamendran, S.Y. Kumar, G. Chellasamy, S. Govindaraju, K. Yun, N.C.S. Selvam, A. Maruthapillai, W. Li, Recent Developments in Copper‐Based Catalysts for Enhanced Electrochemical CO2 Reduction, Advanced Sustainable Systems, (2024) 2300549.
[2] 張庭綱, 微陽極導引電鍍法製作微銅柱及銅柵欄之研究, 機械工程研究所, 國立中央大學, 桃園縣, 2004, pp. 168.
[3] 鄭家宏, 以微陽極導引電鍍法製作鎳銅合金微柱, 機械工程研究所, 國立中央大學, 桃園縣, 2005, pp. 151.
[4] 林宗漢, 以微陽極導引電鍍法於氯化膽鹼離子液體中析鍍鎳之研究, 機械工程研究所, 國立中央大學, 桃園縣, 2008, pp. 93.
[5] 楊仁泓, 微陽極導引電鍍法製備微析物之局部電場強度分析, 機械工程研究所, 國立中央大學, 桃園縣, 2009, pp. 107.
[6] 曾耀田, 銅微柱表面之電化學析鍍氧化鋅奈米結構研究, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2012, pp. 65.
[7] 顧乃華, 以微陽極導引電鍍法製備銅螺旋微米結構與其機械性質分析, 機械工程學系, 國立中央大學, 桃園市, 2015, pp. 97.
[8] 李昱, 以微電鍍法製備鎳鐵合金三維微結構之研究, 機械工程學系, 國立中央大學, 桃園市, 2018, pp. 121.
[9] 張翔, 銅鎳合金微結構之微電鍍研究, 材料科學與工程研究所, 國立中央大學, 桃園市, 2018, pp. 112.
[10] 劉謹綸, 以微電鍍法製備三維銅錫介金屬化合物微結構, 材料科學與工程研究所, 國立中央大學, 桃園市, 2018, pp. 120.
[11] 林佳政, 電鍍製作銅錫合金及Cu6Sn5之三維奈米晶微結構及其特性研究, 材料科學與工程研究所, 國立中央大學, 桃園市, 2019, pp. 101.
[12] X. Guan, 以電鍍法製備鈷鐵鎳合金三維微結構及其特性之研究, 機械工程學系, 國立中央大學, 桃園市, 2019, pp. 101.
[13] 許壬瀚, 自含檸檬酸鈉鍍浴中電鍍銅鎳合金微柱並探討 其形貌、組成、構造與性質, 材料科學與工程研究所, 國立中央大學, 桃園市, 2021, pp. 145.
[14] 曾耀田, 以微陽極導引電鍍法製作鎳鉻合金微螺旋及感測一氧化碳用氧化鋅/銅微感測器, 材料科學與工程研究所, 國立中央大學, 桃園市, 2021, pp. 182.
[15] 賴威全, 硫脲及其衍生物添加對微陽極導引電鍍法製備銅微柱之結構及特性影響研究, 機械工程學系, 國立中央大學, 桃園市, 2022, pp. 128.
[16] D. Gianolio, M.D. Higham, M.G. Quesne, M. Aramini, R. Xu, A.I. Large, G. Held, J.-J.s. Velasco-Vélez, M. Haevecker, A. Knop-Gericke, Interfacial chemistry in the electrocatalytic hydrogenation of CO2 over C-Supported Cu-Based systems, ACS catalysis, 13 (2023) 5876-5895.
[17] Z. Zhang, S. Liu, Z. Wu, X. Chen, J. Wang, Y. Gao, S. Wang, F. Tao, G. Lv, High efficiency coupled electrocatalytic CO2 reduction to C2H4 with 5-hydroxymethylfurfural oxidation over Cu-based nanoflower electrocatalysts, Green Chemistry, 25 (2023) 5404-5415.
[18] A. Brenner, Electrodeposition of alloys: principles and practice, Elsevier 2013.
[19] 張永杰, 即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2013, pp. 108.
[20] 李盈穀, 以微電鍍法製備鋅銅合金微結構, 機械工程學系, 國立中央大學, 桃園市, 2020, pp. 89.
[21] 王俊堯, 在焦磷酸鍍液中製備銅-鋅薄膜之平板電鍍法與製備合金微柱之微陽極導引電鍍法之比較, 機械工程學系, 國立中央大學, 桃園市, 2022, pp. 163.
[22] 李盈家, 以微電鍍法析鍍鎳鎢合金微結構並研究其在鹼性溶液電解產氫行為, 材料科學與工程研究所, 國立中央大學, 桃園市, 2020, pp. 150.
[23] 拉維雅, On the Fabrication of Three-Dimensional Nickel-Zinc alloys by electroplating and Their Performance of Hydrogen evolution in Alkaline Water Electrolysis, 應用材料科學國際研究生碩士學位學程, 國立中央大學, 桃園市, 2020, pp. 75.
[24] 黃勤, Ni-W-Zn 三元合金微柱、微螺旋之製備 及其在1.0 M KOH(pH = 14)中之產氫行為探討, 機械工程學系, 國立中央大學, 桃園市, 2022, pp. 177.
[25] 黃楚雯, 鎳鉬鋅合金微柱、微螺旋之製備及其在1M KOH中之產氫行為探討, 機械工程學系, 國立中央大學, 桃園市, 2022, pp. 161.
[26] 劉彥廷, 鎳鉬鎢合金微柱與微螺旋結構之 MAGE製備及其在1.0 M KOH中之產氫研究, 材料科學與工程研究所, 國立中央大學, 桃園市, 2022, pp. 170.
[27] 賴宗群, 以MAGE製備鈷鐵、鈷鐵鉻合金微柱,並探討其在1.0 M KOH中之電解析氧性能, 材料科學與工程研究所, 國立中央大學, 桃園市, 2023, pp. 149.
[28] 楊政諭, 以微電鍍法製備鎳鈷鐵、鎳鈷鐵鉻合金及其在鹼性環境中之產氧反應行為研究, 材料科學與工程研究所, 國立中央大學, 桃園市, 2023, pp. 137.
[29] J.-H. Zhou, Y.-W. Zhang, Metal-based heterogeneous electrocatalysts for reduction of carbon dioxide and nitrogen: mechanisms, recent advances and perspective, Reaction Chemistry & Engineering, 3 (2018) 591-625.
[30] H. Liang, M. Li, Z. Li, W. Xie, T. Zhang, Q. Wang, Photoelectrochemical CO2 reduction with copper-based photocathodes, Journal of CO2 Utilization, 79 (2024) 102639.
[31] X. Hong, H. Zhu, D. Du, Q. Zhang, Y. Li, Research Progress of Copper-Based Bimetallic Electrocatalytic Reduction of CO2, Catalysts, 13 (2023) 376.
[32] J. Huang, J. Dai, J. Zhu, R. Chen, X. Fu, H. Liu, G. Li, Bimetallic Au-Cu gradient alloy for electrochemical CO2 reduction into C2H4 at low overpotential, Journal of Catalysis, 415 (2022) 134-141.
[33] D. Ren, B.S.-H. Ang, B.S. Yeo, Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts, ACS Catalysis, 6 (2016) 8239-8247.
[34] Y. Feng, Z. Li, H. Liu, C. Dong, J. Wang, S.A. Kulinich, X. Du, Laser-prepared CuZn alloy catalyst for selective electrochemical reduction of CO2 to ethylene, Langmuir, 34 (2018) 13544-13549.
[35] Y. Baek, H. Song, D. Hong, S. Wang, S. Lee, Y.-C. Joo, G.-D. Lee, J. Oh, Electrochemical carbon dioxide reduction on copper–zinc alloys: ethanol and ethylene selectivity analysis, Journal of Materials Chemistry A, 10 (2022) 9393-9401.
[36] Y. Yang, H. Fu, C. Xiao, X. Du, Z. Song, Efficient electrochemical CO2 reduction to C2+ hydrocarbons on Zn-doped Cu films, Applied Surface Science, 646 (2024) 158866.
[37] Y. Xu, C. Li, Y. Xiao, C. Wu, Y. Li, Y. Li, J. Han, Q. Liu, J. He, Tuning the selectivity of liquid products of CO2RR by Cu–Ag alloying, ACS Applied Materials & Interfaces, 14 (2022) 11567-11574.
[38] L. Shang, X. Lv, L. Zhong, S. Li, G. Zheng, Efficient CO2 electroreduction to ethanol by Cu3Sn catalyst, Small Methods, 6 (2022) 2101334.
[39] H. Khan, A.S. Yerramilli, A. D′Oliveira, T.L. Alford, D.C. Boffito, G.S. Patience, Experimental methods in chemical engineering: X‐ray diffraction spectroscopy—XRD, The Canadian journal of chemical engineering, 98 (2020) 1255-1266.
[40] T. Theivasanthi, M. Alagar, X-ray diffraction studies of copper nanopowder, arXiv preprint arXiv:1003.6068, (2010).
[41] E. Sidot, A. Kahn-Harari, E. Cesari, L. Robbiola, The lattice parameter of α-bronzes as a function of solute content: application to archaeological materials, Materials Science and Engineering: A, 393 (2005) 147-156.
[42] S. Zhang, R. Zhang, Y. Yao, X. Zong, J. Zhang, Y. Xiong, P. Yang, M. An, Chemically dezincified copper nanowires catalysts with competitive selectivity for ethylene production by carbon dioxide reduction reaction, Ionics, 28 (2022) 4817-4824.
[43] D. Coelho, G.M. Luiz, S.A. Machado, Estimating the electrochemically active area: revisiting a basic concept in electrochemistry, Journal of the Brazilian Chemical Society, 32 (2021) 1912-1917.
[44] E. Cossar, M.S. Houache, Z. Zhang, E.A. Baranova, Comparison of electrochemical active surface area methods for various nickel nanostructures, Journal of Electroanalytical Chemistry, 870 (2020) 114246.
[45] S. Nagappan, S. Yang, A. Adhikari, R. Patel, S. Kundu, A review on consequences of flexible layered double hydroxide-based electrodes: fabrication and water splitting application, Sustainable Energy & Fuels, (2023).
[46] H.S. Magar, R.Y. Hassan, A. Mulchandani, Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications, Sensors, 21 (2021) 6578.
[47] A.C. Lazanas, M.I. Prodromidis, Electrochemical impedance spectroscopy─ a tutorial, ACS Measurement Science Au, 3 (2023) 162-193.
[48] N. Dutta, D. Bagchi, G. Chawla, S.C. Peter, A Guideline to Determine Faradaic Efficiency in Electrochemical CO2 Reduction, ACS Energy Letters, 9 (2024) 323-328.
[49] J. Zhang, M. Qiao, Y. Li, Q. Shao, X. Huang, Highly active and selective electrocatalytic CO2 conversion enabled by core/shell Ag/(amorphous-Sn (IV)) nanostructures with tunable shell thickness, ACS applied materials & interfaces, 11 (2019) 39722-39727.
[50] M. Yusufoğlu, S. Tafazoli, T. Balkan, S. Kaya, Enhancement in CO Selectivity by Modification of ZnO with Cu x O for Electrochemical Reduction of CO2, Energy Technology, 11 (2023) 2300542.
[51] S.T. Guo, Y.W. Du, H. Luo, Z. Zhu, T. Ouyang, Z.Q. Liu, Stabilizing Undercoordinated Zn Active Sites through Confinement in CeO2 Nanotubes for Efficient Electrochemical CO2 Reduction, Angewandte Chemie, 136 (2024) e202314099.
[52] X. Xia, L. Figueroa-Cosme, J. Tao, H.-C. Peng, G. Niu, Y. Zhu, Y. Xia, Facile synthesis of iridium nanocrystals with well-controlled facets using seed-mediated growth, Journal of the American Chemical Society, 136 (2014) 10878-10881.
[53] N.T. Tuan, J. Park, J. Lee, J. Gwak, D. Lee, Synthesis of nanoporous Cu films by dealloying of electrochemically deposited Cu–Zn alloy films, Corrosion science, 80 (2014) 7-11.
[54] X. Su, Y. Sun, L. Jin, L. Zhang, Y. Yang, P. Kerns, B. Liu, S. Li, J. He, Hierarchically porous Cu/Zn bimetallic catalysts for highly selective CO2 electroreduction to liquid C2 products, Applied Catalysis B: Environmental, 269 (2020) 118800.
[55] O. Alvarez, C. Valdés, A. Barba, R. González, R. Valdéz, C. Cruz, D.G. Agredo, A. Covelo, M.Á. Hernández, Wear Resistance Improvement of Copper Alloys Using a Thermochemically Obtained Zinc-Rich Coating, European Journal of Engineering and Technology Research, 5 (2020) 1089-1096.
[56] J.M. Beiramar, A. Griboval‐Constant, A.Y. Khodakov, Effects of metal promotion on the performance of CuZnAl catalysts for alcohol synthesis, ChemCatChem, 6 (2014) 1788-1793.
[57] L. Rajeshkumar, R. Suriyanarayanan, K.S. Hari, S.V. Babu, V. Bhuvaneswari, M.J. Karunan, Influence of boron carbide addition on particle size of copper zinc alloys synthesized by powder metallurgy, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2020, pp. 012008.
[58] J. Wang, Z. Gao, P. Yan, Y. Shen, R. Yang, Z. Zuo, W. Huang, The effect of CuO crystallite size on the structure and performance of CuZnAl catalyst for mixed alcohols synthesis from syngas, Journal of Physics and Chemistry of Solids, 170 (2022) 110883.
[59] V.S.S. Mosali, G. Puxty, M.D. Horne, A.M. Bond, J. Zhang, Selective electrochemical methanation of carbon dioxide using a sulphide derived CuZn catalyst, Electrochimica Acta, 475 (2024) 143628.
[60] X. Zhang, Z. Zhang, H. Li, R. Gao, M. Xiao, J. Zhu, M. Feng, Z. Chen, Insight into heterogeneous electrocatalyst design understanding for the reduction of carbon dioxide, Advanced Energy Materials, 12 (2022) 2201461.
[61] K. Panigrahi, S. Mal, S. Bhattacharyya, Deciphering interfacial charge transfer mechanisms in electrochemical energy systems through impedance spectroscopy, Journal of Materials Chemistry A, (2024).
[62] D. Du, R. Lan, J. Humphreys, S. Sengodan, K. Xie, H. Wang, S. Tao, Achieving both high selectivity and current density for CO2 reduction to formate on nanoporous tin foam electrocatalysts, ChemistrySelect, 1 (2016) 1711-1715.
[63] A. Demir, NMR-the basic principles and its use in studies of water/ethanol/mixture, 2012.
[64] A.H. da Silva, S.J. Raaijman, C.S. Santana, J.M. Assaf, J.F. Gomes, M.T. Koper, Electrocatalytic CO2 reduction to C2+ products on Cu and CuxZny electrodes: effects of chemical composition and surface morphology, Journal of Electroanalytical Chemistry, 880 (2021) 114750. |