博碩士論文 111329014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:177 、訪客IP:3.129.194.182
姓名 孫秉蔚(Ping-Wei Sun)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 銅-鋅微柱之製備及其在二氧化碳還原電催化之選擇性
(Fabrication of Copper-Zinc Micropillars and Selectivity in Electrocatalytic Carbon Dioxide Reduction)
相關論文
★ 1M KOH中Ag-Cu、Ag-Co二元薄膜觸媒對氧還原之催化★ Mg2Ni1-xCux合金在6M KOH水溶液中之電化學吸放氫性質及相關腐蝕行為之研究
★ 以電化學方法在鋅箔上製備氧化鋅奈米結構★ 固態氧化物燃料電池陰極 La0.8Sr0.2Mn1−xRuxO3之製作與特性研究
★ 奈米氧化鋅結構之電化學研製及其在發光二極體之應用★ 銅微柱表面之電化學析鍍氧化鋅奈米結構研究
★ 香草醛在含50 V% 乙二醇低氯離子溶液中對AA6060鋁合金之腐蝕抑制研究★ 磁控濺鍍製備鋯、鈦共摻氧化鋅薄膜之結構與光電特性分析
★ 即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質★ 鑭、鍶、銀、錳氧化物之製備與其作為固態氧化物燃料電池陰極之研究
★ Photodetector - Light Harvesting and specific surface Enhancement (LivE)★ 具奈米結構赤鐵礦之製備及其在光電化學行為研究
★ 以溶凝膠法製備鋁鈦共摻雜氧化鋅薄膜並研究其微結構,腐蝕及光電化學之特性★ Ba0.5Sr0.5Co0.8Fe0.2O3-δ-La3Ni2O7+δ複合 結構應用於P-SOFC陰極之可行性研究
★ 銅鎳合金微結構之微電鍍研究★ 以微電鍍法製備三維銅錫介金屬化合物微結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-31以後開放)
摘要(中) 近年來,二氧化碳濃度上升,導致全球暖化加劇。因此,透過二氧化碳還原反應(CO2 Electrochemical Reduction Reaction, CO2RR),將二氧化碳轉化為高附加價值之化學品,可以實現碳中和之目標。本研究以微陽極導引電鍍法(Micro-Anode Guided Electroplating, MAGE)製備銅鋅合金微柱,並探討其在0.1 M KHCO3中進行CO2RR之產物。固定析鍍偏壓為4.6 V、間距控制在40 μm,改變硫酸鋅濃度(0.15 ~ 0.18 M)進行析鍍。合金微柱(Cu74Zn26、Cu66Zn34、Cu63Zn37、Cu55Zn45)經SEM、EDX、XRD分析材料特性。此製程所得微柱具有三維結構,增加催化活性面積。隨後,利用循環伏安法、線性掃描伏安法、電化學交流阻抗頻譜、計時電流法於0.1 M KHCO3下分析其電催化性能,結果顯示:CZ16合金微柱(組成為Cu66Zn34)具有最大之電化學活性表面積(Electrochemical Surface Area, ECSA)為8.7 cm2。此外,在-1.0 V vs. RHE下,具有最小之(乙醇)塔弗斜率(Tafel slope)為185 mV/dec。最後,藉由GC、NMR、FTIR分析CO2RR後之產物。結果顯示:CZ16合金微柱(組成為Cu66Zn34)還原為乙醇,在-1.0 V vs. RHE下,具有最高之法拉第效率(Faradaic Efficiency, FE)為35.0 %,乙醇之選擇性(Selectivity)為51.2 %。此外,CO2RR後成分變化增加催化面積,顯示其為銅鋅雙金屬異質電極。
摘要(英) In recent years, the rising concentration of carbon dioxide has exacerbated global warming. Therefore, converting carbon dioxide into high-value chemicals through the CO2 Electrochemical Reduction Reaction (CO2RR) can achieve the goal of carbon neutrality. This study employs Micro-Anode Guided Electroplating (MAGE) to prepare Cu-Zn alloy micro-columns and investigates the products obtained from CO2RR in 0.1 M KHCO3. The alloy micro-columns (Cu74Zn26, Cu66Zn34, Cu63Zn37, Cu55Zn45) were synthesized by setting a fixed plating bias of 4.6 V and spacing control at 40 μm while varying zinc sulfate concentration (0.15~0.18 M). The material characteristics were analyzed using SEM, EDX, and XRD. The resulting micro-columns feature a three-dimensional structure, increasing the catalytic active surface area. Subsequently, electrochemical performance was analyzed using cyclic voltammetry, linear sweep voltammetry, electrochemical impedance spectroscopy, and chronoamperometry in 0.1 M KHCO3. Results indicate that CZ16 alloy micro-column (composition Cu66Zn34) has the largest Electrochemical Surface Area (ECSA) of 8.7 cm². Additionally, at -1.0 V vs. RHE, it shows the lowest Tafel slope (for ethanol) of 185 mV/dec. Finally, GC, NMR, and FTIR were used to analyze the products post-CO2RR. Results show that CZ16 alloy micro-column (composition Cu66Zn34) reduces to ethanol, with the highest Faradaic Efficiency (FE) of 35.0 % and selectivity for ethanol at 51.2 % at -1.0 V vs. RHE. Furthermore, compositional changes after CO2RR increase the catalytic surface area, confirming it as a Cu-Zn bimetallic heterogeneous electrode.
關鍵字(中) ★ 銅鋅合金
★ 微陽極導引電鍍法
★ 二氧化碳還原反應
★ 乙醇
★ 選擇性
★ 法拉第效率
關鍵字(英) ★ Cu-Zn alloy
★ Micro-Anode Guided Electroplating
★ CO2 Reduction Reaction
★ Ethanol
★ Selectivity
★ Faradaic Efficiency
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 ix
圖目錄 xiv
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 2
第二章 文獻回顧 5
2-1 合金電鍍原理 5
2-2 微陽極導引電鍍法之發展 6
2-2-1 Cu-Zn合金微柱 6
2-2-2 析氫反應(Hydrogen Evolution Reaction, HER) 7
2-2-3 析氧反應(Oxygen Evolution Reaction, OER) 7
2-3 二氧化碳還原反應(Carbon Dioxide Reduction Reaction, CO2RR) 8
2-3-1 反應機制 8
2-3-2 產物 9
2-4 電催化劑 13
2-4-1 Cu-Au 13
2-4-2 Cu-Zn 14
2-4-3 Cu-Ag 16
2-4-4 Cu-Sn 17
第三章 研究方法 18
3-1 實驗架構 18
3-2 微陽極導引電鍍裝置 21
3-3 微陽極與陰極製備 21
3-4 藥品配方 22
3-5 材料特性分析 23
3-5-1 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 23
3-5-2 能量散射光譜儀(Energy-Dispersive X-ray spectroscopy, EDS) 23
3-5-3 X光繞射儀(X-ray Diffractometer, XRD) 24
3-5-4 聚焦離子束(Focus Ion Beam, FIB) 25
3-5-5 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 26
3-5-6 X光光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 27
3-6 電化學分析 28
3-6-1 電化學系統 28
3-6-2 電化學活性表面積(Electrochemical Surface Area, ECSA) 29
3-6-3 線性掃描伏安法(Linear Sweep Voltammetry, LSV) 30
3-6-4 電化學阻抗頻譜(Electrochemical Impedance Spectroscopy, EIS) 30
3-6-5 計時電流法(Chronoamperometry, CA) 31
3-7 產物分析 31
3-7-1 氣相層析儀(Gas Chromatography, GC) 31
3-7-2 核磁共振儀(Nuclear Magnetic Resonance, NMR) 32
3-7-3 傅立葉轉換紅外光譜儀(Fourier-Transform Infrared Spectroscopy FTIR) 35
第四章 結果與討論 36
4-1 二氧化碳還原反應前後特性之探討 36
4-1-1 表面形貌分析 SEM 36
4-1-2 成分元素分析 EDX 42
4-1-3 晶體結構分析 XRD 46
4-1-4 顯微結構分析 TEM 65
4-1-5 表面元素分析 XPS 68
4-2 電催化性能之探討 72
4-2-1 電化學活性表面積 ECSA 72
4-2-2 線性掃描伏安法 LSV 78
4-2-3 電化學阻抗頻譜 EIS 82
4-2-4 計時電流法 CA 88
4-3 二氧化碳還原產物之探討 93
4-3-1 氣相產物定量分析 GC 93
4-3-2 液相產物定量分析 NMR 97
4-3-3 官能基結構鑑定 FTIR 106
4-3-4 二氧化碳還原反應之催化性能分析 107
第五章 結論與未來展望 109
參考文獻 110
參考文獻 [1] M.S. Yesupatham, B. Honnappa, N. Agamendran, S.Y. Kumar, G. Chellasamy, S. Govindaraju, K. Yun, N.C.S. Selvam, A. Maruthapillai, W. Li, Recent Developments in Copper‐Based Catalysts for Enhanced Electrochemical CO2 Reduction, Advanced Sustainable Systems, (2024) 2300549.
[2] 張庭綱, 微陽極導引電鍍法製作微銅柱及銅柵欄之研究, 機械工程研究所, 國立中央大學, 桃園縣, 2004, pp. 168.
[3] 鄭家宏, 以微陽極導引電鍍法製作鎳銅合金微柱, 機械工程研究所, 國立中央大學, 桃園縣, 2005, pp. 151.
[4] 林宗漢, 以微陽極導引電鍍法於氯化膽鹼離子液體中析鍍鎳之研究, 機械工程研究所, 國立中央大學, 桃園縣, 2008, pp. 93.
[5] 楊仁泓, 微陽極導引電鍍法製備微析物之局部電場強度分析, 機械工程研究所, 國立中央大學, 桃園縣, 2009, pp. 107.
[6] 曾耀田, 銅微柱表面之電化學析鍍氧化鋅奈米結構研究, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2012, pp. 65.
[7] 顧乃華, 以微陽極導引電鍍法製備銅螺旋微米結構與其機械性質分析, 機械工程學系, 國立中央大學, 桃園市, 2015, pp. 97.
[8] 李昱, 以微電鍍法製備鎳鐵合金三維微結構之研究, 機械工程學系, 國立中央大學, 桃園市, 2018, pp. 121.
[9] 張翔, 銅鎳合金微結構之微電鍍研究, 材料科學與工程研究所, 國立中央大學, 桃園市, 2018, pp. 112.
[10] 劉謹綸, 以微電鍍法製備三維銅錫介金屬化合物微結構, 材料科學與工程研究所, 國立中央大學, 桃園市, 2018, pp. 120.
[11] 林佳政, 電鍍製作銅錫合金及Cu6Sn5之三維奈米晶微結構及其特性研究, 材料科學與工程研究所, 國立中央大學, 桃園市, 2019, pp. 101.
[12] X. Guan, 以電鍍法製備鈷鐵鎳合金三維微結構及其特性之研究, 機械工程學系, 國立中央大學, 桃園市, 2019, pp. 101.
[13] 許壬瀚, 自含檸檬酸鈉鍍浴中電鍍銅鎳合金微柱並探討 其形貌、組成、構造與性質, 材料科學與工程研究所, 國立中央大學, 桃園市, 2021, pp. 145.
[14] 曾耀田, 以微陽極導引電鍍法製作鎳鉻合金微螺旋及感測一氧化碳用氧化鋅/銅微感測器, 材料科學與工程研究所, 國立中央大學, 桃園市, 2021, pp. 182.
[15] 賴威全, 硫脲及其衍生物添加對微陽極導引電鍍法製備銅微柱之結構及特性影響研究, 機械工程學系, 國立中央大學, 桃園市, 2022, pp. 128.
[16] D. Gianolio, M.D. Higham, M.G. Quesne, M. Aramini, R. Xu, A.I. Large, G. Held, J.-J.s. Velasco-Vélez, M. Haevecker, A. Knop-Gericke, Interfacial chemistry in the electrocatalytic hydrogenation of CO2 over C-Supported Cu-Based systems, ACS catalysis, 13 (2023) 5876-5895.
[17] Z. Zhang, S. Liu, Z. Wu, X. Chen, J. Wang, Y. Gao, S. Wang, F. Tao, G. Lv, High efficiency coupled electrocatalytic CO2 reduction to C2H4 with 5-hydroxymethylfurfural oxidation over Cu-based nanoflower electrocatalysts, Green Chemistry, 25 (2023) 5404-5415.
[18] A. Brenner, Electrodeposition of alloys: principles and practice, Elsevier 2013.
[19] 張永杰, 即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質, 材料科學與工程研究所, 國立中央大學, 桃園縣, 2013, pp. 108.
[20] 李盈穀, 以微電鍍法製備鋅銅合金微結構, 機械工程學系, 國立中央大學, 桃園市, 2020, pp. 89.
[21] 王俊堯, 在焦磷酸鍍液中製備銅-鋅薄膜之平板電鍍法與製備合金微柱之微陽極導引電鍍法之比較, 機械工程學系, 國立中央大學, 桃園市, 2022, pp. 163.
[22] 李盈家, 以微電鍍法析鍍鎳鎢合金微結構並研究其在鹼性溶液電解產氫行為, 材料科學與工程研究所, 國立中央大學, 桃園市, 2020, pp. 150.
[23] 拉維雅, On the Fabrication of Three-Dimensional Nickel-Zinc alloys by electroplating and Their Performance of Hydrogen evolution in Alkaline Water Electrolysis, 應用材料科學國際研究生碩士學位學程, 國立中央大學, 桃園市, 2020, pp. 75.
[24] 黃勤, Ni-W-Zn 三元合金微柱、微螺旋之製備 及其在1.0 M KOH(pH = 14)中之產氫行為探討, 機械工程學系, 國立中央大學, 桃園市, 2022, pp. 177.
[25] 黃楚雯, 鎳鉬鋅合金微柱、微螺旋之製備及其在1M KOH中之產氫行為探討, 機械工程學系, 國立中央大學, 桃園市, 2022, pp. 161.
[26] 劉彥廷, 鎳鉬鎢合金微柱與微螺旋結構之 MAGE製備及其在1.0 M KOH中之產氫研究, 材料科學與工程研究所, 國立中央大學, 桃園市, 2022, pp. 170.
[27] 賴宗群, 以MAGE製備鈷鐵、鈷鐵鉻合金微柱,並探討其在1.0 M KOH中之電解析氧性能, 材料科學與工程研究所, 國立中央大學, 桃園市, 2023, pp. 149.
[28] 楊政諭, 以微電鍍法製備鎳鈷鐵、鎳鈷鐵鉻合金及其在鹼性環境中之產氧反應行為研究, 材料科學與工程研究所, 國立中央大學, 桃園市, 2023, pp. 137.
[29] J.-H. Zhou, Y.-W. Zhang, Metal-based heterogeneous electrocatalysts for reduction of carbon dioxide and nitrogen: mechanisms, recent advances and perspective, Reaction Chemistry & Engineering, 3 (2018) 591-625.
[30] H. Liang, M. Li, Z. Li, W. Xie, T. Zhang, Q. Wang, Photoelectrochemical CO2 reduction with copper-based photocathodes, Journal of CO2 Utilization, 79 (2024) 102639.
[31] X. Hong, H. Zhu, D. Du, Q. Zhang, Y. Li, Research Progress of Copper-Based Bimetallic Electrocatalytic Reduction of CO2, Catalysts, 13 (2023) 376.
[32] J. Huang, J. Dai, J. Zhu, R. Chen, X. Fu, H. Liu, G. Li, Bimetallic Au-Cu gradient alloy for electrochemical CO2 reduction into C2H4 at low overpotential, Journal of Catalysis, 415 (2022) 134-141.
[33] D. Ren, B.S.-H. Ang, B.S. Yeo, Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts, ACS Catalysis, 6 (2016) 8239-8247.
[34] Y. Feng, Z. Li, H. Liu, C. Dong, J. Wang, S.A. Kulinich, X. Du, Laser-prepared CuZn alloy catalyst for selective electrochemical reduction of CO2 to ethylene, Langmuir, 34 (2018) 13544-13549.
[35] Y. Baek, H. Song, D. Hong, S. Wang, S. Lee, Y.-C. Joo, G.-D. Lee, J. Oh, Electrochemical carbon dioxide reduction on copper–zinc alloys: ethanol and ethylene selectivity analysis, Journal of Materials Chemistry A, 10 (2022) 9393-9401.
[36] Y. Yang, H. Fu, C. Xiao, X. Du, Z. Song, Efficient electrochemical CO2 reduction to C2+ hydrocarbons on Zn-doped Cu films, Applied Surface Science, 646 (2024) 158866.
[37] Y. Xu, C. Li, Y. Xiao, C. Wu, Y. Li, Y. Li, J. Han, Q. Liu, J. He, Tuning the selectivity of liquid products of CO2RR by Cu–Ag alloying, ACS Applied Materials & Interfaces, 14 (2022) 11567-11574.
[38] L. Shang, X. Lv, L. Zhong, S. Li, G. Zheng, Efficient CO2 electroreduction to ethanol by Cu3Sn catalyst, Small Methods, 6 (2022) 2101334.
[39] H. Khan, A.S. Yerramilli, A. D′Oliveira, T.L. Alford, D.C. Boffito, G.S. Patience, Experimental methods in chemical engineering: X‐ray diffraction spectroscopy—XRD, The Canadian journal of chemical engineering, 98 (2020) 1255-1266.
[40] T. Theivasanthi, M. Alagar, X-ray diffraction studies of copper nanopowder, arXiv preprint arXiv:1003.6068, (2010).
[41] E. Sidot, A. Kahn-Harari, E. Cesari, L. Robbiola, The lattice parameter of α-bronzes as a function of solute content: application to archaeological materials, Materials Science and Engineering: A, 393 (2005) 147-156.
[42] S. Zhang, R. Zhang, Y. Yao, X. Zong, J. Zhang, Y. Xiong, P. Yang, M. An, Chemically dezincified copper nanowires catalysts with competitive selectivity for ethylene production by carbon dioxide reduction reaction, Ionics, 28 (2022) 4817-4824.
[43] D. Coelho, G.M. Luiz, S.A. Machado, Estimating the electrochemically active area: revisiting a basic concept in electrochemistry, Journal of the Brazilian Chemical Society, 32 (2021) 1912-1917.
[44] E. Cossar, M.S. Houache, Z. Zhang, E.A. Baranova, Comparison of electrochemical active surface area methods for various nickel nanostructures, Journal of Electroanalytical Chemistry, 870 (2020) 114246.
[45] S. Nagappan, S. Yang, A. Adhikari, R. Patel, S. Kundu, A review on consequences of flexible layered double hydroxide-based electrodes: fabrication and water splitting application, Sustainable Energy & Fuels, (2023).
[46] H.S. Magar, R.Y. Hassan, A. Mulchandani, Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications, Sensors, 21 (2021) 6578.
[47] A.C. Lazanas, M.I. Prodromidis, Electrochemical impedance spectroscopy─ a tutorial, ACS Measurement Science Au, 3 (2023) 162-193.
[48] N. Dutta, D. Bagchi, G. Chawla, S.C. Peter, A Guideline to Determine Faradaic Efficiency in Electrochemical CO2 Reduction, ACS Energy Letters, 9 (2024) 323-328.
[49] J. Zhang, M. Qiao, Y. Li, Q. Shao, X. Huang, Highly active and selective electrocatalytic CO2 conversion enabled by core/shell Ag/(amorphous-Sn (IV)) nanostructures with tunable shell thickness, ACS applied materials & interfaces, 11 (2019) 39722-39727.
[50] M. Yusufoğlu, S. Tafazoli, T. Balkan, S. Kaya, Enhancement in CO Selectivity by Modification of ZnO with Cu x O for Electrochemical Reduction of CO2, Energy Technology, 11 (2023) 2300542.
[51] S.T. Guo, Y.W. Du, H. Luo, Z. Zhu, T. Ouyang, Z.Q. Liu, Stabilizing Undercoordinated Zn Active Sites through Confinement in CeO2 Nanotubes for Efficient Electrochemical CO2 Reduction, Angewandte Chemie, 136 (2024) e202314099.
[52] X. Xia, L. Figueroa-Cosme, J. Tao, H.-C. Peng, G. Niu, Y. Zhu, Y. Xia, Facile synthesis of iridium nanocrystals with well-controlled facets using seed-mediated growth, Journal of the American Chemical Society, 136 (2014) 10878-10881.
[53] N.T. Tuan, J. Park, J. Lee, J. Gwak, D. Lee, Synthesis of nanoporous Cu films by dealloying of electrochemically deposited Cu–Zn alloy films, Corrosion science, 80 (2014) 7-11.
[54] X. Su, Y. Sun, L. Jin, L. Zhang, Y. Yang, P. Kerns, B. Liu, S. Li, J. He, Hierarchically porous Cu/Zn bimetallic catalysts for highly selective CO2 electroreduction to liquid C2 products, Applied Catalysis B: Environmental, 269 (2020) 118800.
[55] O. Alvarez, C. Valdés, A. Barba, R. González, R. Valdéz, C. Cruz, D.G. Agredo, A. Covelo, M.Á. Hernández, Wear Resistance Improvement of Copper Alloys Using a Thermochemically Obtained Zinc-Rich Coating, European Journal of Engineering and Technology Research, 5 (2020) 1089-1096.
[56] J.M. Beiramar, A. Griboval‐Constant, A.Y. Khodakov, Effects of metal promotion on the performance of CuZnAl catalysts for alcohol synthesis, ChemCatChem, 6 (2014) 1788-1793.
[57] L. Rajeshkumar, R. Suriyanarayanan, K.S. Hari, S.V. Babu, V. Bhuvaneswari, M.J. Karunan, Influence of boron carbide addition on particle size of copper zinc alloys synthesized by powder metallurgy, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2020, pp. 012008.
[58] J. Wang, Z. Gao, P. Yan, Y. Shen, R. Yang, Z. Zuo, W. Huang, The effect of CuO crystallite size on the structure and performance of CuZnAl catalyst for mixed alcohols synthesis from syngas, Journal of Physics and Chemistry of Solids, 170 (2022) 110883.
[59] V.S.S. Mosali, G. Puxty, M.D. Horne, A.M. Bond, J. Zhang, Selective electrochemical methanation of carbon dioxide using a sulphide derived CuZn catalyst, Electrochimica Acta, 475 (2024) 143628.
[60] X. Zhang, Z. Zhang, H. Li, R. Gao, M. Xiao, J. Zhu, M. Feng, Z. Chen, Insight into heterogeneous electrocatalyst design understanding for the reduction of carbon dioxide, Advanced Energy Materials, 12 (2022) 2201461.
[61] K. Panigrahi, S. Mal, S. Bhattacharyya, Deciphering interfacial charge transfer mechanisms in electrochemical energy systems through impedance spectroscopy, Journal of Materials Chemistry A, (2024).
[62] D. Du, R. Lan, J. Humphreys, S. Sengodan, K. Xie, H. Wang, S. Tao, Achieving both high selectivity and current density for CO2 reduction to formate on nanoporous tin foam electrocatalysts, ChemistrySelect, 1 (2016) 1711-1715.
[63] A. Demir, NMR-the basic principles and its use in studies of water/ethanol/mixture, 2012.
[64] A.H. da Silva, S.J. Raaijman, C.S. Santana, J.M. Assaf, J.F. Gomes, M.T. Koper, Electrocatalytic CO2 reduction to C2+ products on Cu and CuxZny electrodes: effects of chemical composition and surface morphology, Journal of Electroanalytical Chemistry, 880 (2021) 114750.
指導教授 林景崎(Jing-Chie Lin) 審核日期 2024-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明