博碩士論文 111226013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:81 、訪客IP:3.135.182.13
姓名 王柏瑜(Po-Yu Wang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 具有空間反射對稱之準一維光子晶體之介面態與札克相分析
(The Interface States and Zak Phase Analysis of Quasi One-Dimensional Photonic Crystals with Space Inversion Symmetry)
相關論文
★ 平坦化陣列波導光柵分析和一維光子晶體研究★ 光子晶體波導與藕合共振波導之研究
★ 光子晶體異常折射之研究★ 光子晶體傳導帶與介電質柱波導之研究
★ 平面波展開法在光子晶體之應用★ 偏平面光子晶體能帶之研究
★ 通道選擇濾波器之探討★ 廣義光子晶體元件之研究與分析
★ 新式光子晶體波導濾波器之研究★ 廣義非均向性介質的光傳播研究
★ 光子晶體耦合濾波器之研究★ 聲子晶體傳導帶與週期性彈性柱波導之研究
★ 對稱與非對稱波導光柵之特性研究★ 雙曲透鏡之研究
★ 電磁波與聲波隱形斗篷之研究★ 一維光子晶體等效非均向介值之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究如何對一具有空間反射對稱的準一維光子晶體結構計算其札克相,並藉札克相來判斷此光子晶體結構在何種情況下會有介面態。本論文探討的第一類系統是含一排或多排週期分布介電質柱,上下以完美導體為邊界的準一維光子晶體結構。本論文探討的第二類系統則是以二維光子晶體系統為背景的光子晶體波導,並在其中置入一排週期分布介電質柱所形成的波導。對這兩類準一維光子晶體結構,介面態的出現都符合根據札克相所做的拓樸判斷。
摘要(英) This thesis investigates how to calculate the Zak phase for a quasi-one-dimensional photonic crystal structure with spatial reflection symmetry and then uses the Zak phase to determine under what conditions this photonic crystal structure will exhibit interface states.
The first type of systems explored in this paper are quasi-one-dimensional photonic crystal structures consisting of one or more rows of periodically distributed dielectric columns, with perfect conductors as boundaries on the top and bottom. The second type of systems studied are photonic crystal waveguides based on a two-dimensional photonic crystal system, with one row of periodically distributed dielectric columns forming the waveguides. For both kinds of quasi-one-dimensional photonic crystal structures, the appearance of interface states confirms the topological predictions made based on the Zak phase.
關鍵字(中) ★ 光子晶體
★ 札克相
關鍵字(英)
論文目次 摘要 I
Abstract II
誌謝 III
目錄 V
圖目錄 VI
第一章 緒論 1
1.1光子晶體簡介 1
1.2光子晶體概論 2
1.3光子晶體的應用 4
1.4貝里相與札克相 5
1.5 本文架構 7
第二章 札克相與光子晶體理論 8
2.1 電磁波方程式以及波動方程式 8
2.2 光子晶體平面波展開法 11
2.3 貝里相(Berry phase) 12
2.4 札克相(Berry phase) 15
2.5 一維多層膜理論能帶反轉之現象 16
2.6在一維多層膜中的介面態(Edge state) 17
2.7 邊界條件之設定 18
2.7.1週期性邊界條件 18
2.7.2 完美匹配層 19
2.7.3 完美電導體邊界條件 20
第三章、研究方法 22
3.1模擬架構 22
3.1.1 網格的設定 22
3.2 頻帶結構的模擬 23
3.3 札克相的計算方法 25
3.4 光子晶體之能帶拓樸性質反轉 28
3.4.1模擬光子晶體的能帶結構以及布洛赫模態 28
3.4.2計算出兩光子晶體的札克相 30
3.4.3光子晶體帶隙的札克相反轉 32
3.5 光子晶體之能帶拓樸性質反轉 33
3.5.1結構及參數設定 33
3.5.2散射邊界條件介紹 34
3.5.3 一維光子晶體拓樸介面態 34
第四章、研究結果與討論 35
4.1 在準一維的光子晶體中接合後的介面態 35
4.2將準一維結構在y方向上做重複排列 36
4.3 將Type-A、Type-B週期延伸接合後放入光子晶體波導 40
4.3.1 設計符合的光子晶體波導 40
4.3.2計算Type-A、Type-B在波導中的札克相 42
4.3.3 將Type-A、Type-B分別放入光子晶體波導模擬場圖 47
4.3.4 在光子晶體波導中模擬出界面態 49
第五章、 結論與未來展望 52
5.1 結論 52
5.2未來展望 53
參考文獻 54
參考文獻 [1] S. John, Strong localization of photons in certain disordered dielectric superlattices., Phys. Rev. Lett. 58, 2486 (1987)
[2] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics., Phys. Rev. Lett. 58, 2059 (1987)
[3] A.S. Sergeev ,Geometry of projected connections, Zak phase and electric polarization., Phys. Rev. B 98, 161101 (2018)
[4] Michael Victor Berry, Quantal Phase Factors Accompanying Adiabatic Changes., Proceedings Of The Royal Society A. 392 (1802)
[5] Charles Kittel, Introduction to Solid State Physics.,Wiley , 8th ed. (2004)
[6] J. Zak, Berry’s phase for energy bands in solids., Phys. Rev. Lett. 62, 2747 (1989)
[7] Meng Xiao Guancong Ma, Zhiyu Yang, Ping Sheng Z. Q. Zhang and C. T. Chan, Geometric phase and band inversion in periodic acoustic systems., Nature Physics (2015)
[8] Jens von Bergmann, HsingChi von Bergmann, Foucault pendulum through basic geometry Am. J. Phys.75 , 888 (2007)
[9] Meng Xiao, Z. Q. Zhang and C. T. Chan, Surface impedance and bulk band geometric phases in one-dimensional systems., Phys. Rev. X 4, 021017 (2014)
[10] Mikael C. Rechtsman, Julia M. Zeuner, Yonatan Plotnik, Yaakov Lumer, Daniel Podolsky, Felix Dreisow, Stefan Nolte, Mordechai Segev, Alexander Szameit, Photonic Floquet topological insulators., Nature 496, 196–200 (2013)
[11] Meng Xiao, Z. Q. Zhang, C. T. Chan, Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems., Phys. Rev. X 4, 021017 (2014)
[12] 蔡雅雯,吳杰倫,欒丕綱, 從量子霍爾效應到拓樸光子學與拓樸聲子學。科儀新知 211 期 68 - 79 (2017)
[13] David J. Griffiths, Introduction to Electrodynamics., Pearson new international, 4th Ed (2013)
[14] 欒丕綱 , 陳啟昌 , 光子晶體 : 從蝴蝶翅膀到奈米光子學 (2nd Ed.), 五南出版社 (第 二版) (2010)
[15]John D. Joannopoulos, Steven G. Johnson, Joshua N. Winn, Robert D. Meade, Photonic Crystals Molding the Flow of Light., Second Edition (2008)
[16] Hanying Deng, Xianfeng Chen, Nicolae C. Panoiu, and Fangwei Ye, Topological surface plasmons in superlattices with changing sign of the average permittivity., Optics Letters 41, 4281 (2016)
[17] Xin Li, Yan Meng, Xiaoxiao Wu, Sheng Yan, Yingzhou Huang, Shuxia Wang, Weijia Wen, Su-Schrieffer-Heeger model inspired acoustic interface states and edge states., Appl. Phys. Lett 113, 203501 (2018)
[18]皮托科技, COMSOL Mutiphysics 電磁模擬有限元素分析法 (2018)
[19] I.V. Lindell, A.H. Sihvola, Perfect electromagnetic conductor., Journal of Electromagnetic Waves and Applications (2005)
[20] G. Makov and M. C. Payne, Periodic boundary conditions in ab initio calculations., Phys. Rev. B 51, 4014 (1995)
[21] A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W.-P. Su, Solitons in conducting polymers., Rev. Mod. Phys. 60, 781 (1988)
[22] Marcos Atala, Monika Aidelsburger, Julio T. Barreiro, Dmitry Abanin, Takuya Kitagawa, Eugene Demler, Immanuel Bloch, Direct measurement of the Zak phase in topological Bloch bands., Nature Phys. 9, 7952013 (2013)
[23] M. Z. Hasan, C. L. Kane, Colloquium : Topological insulators., Rev. Mod. Phys. 82, 3045 (2010)
[24] Shinsei Ryu, Yasuhiro Hatsugai, Topological origin of zero-energy edge states in particle–hole symmetric systems., Phys. Rev. Lett. 89, 077002 (2002)
[25] P. Delplace, D. Ullmo, and G. Montambaux, Zak phase and the existence of edge states in graphene., Phys. Rev. B 84, 195452 (2011)
[26] Maryam Taherinejad, Kevin F. Garrity, and David Vanderbilt, Wannier center sheets in topological insulators., Phys. Rev. B, 89 , 115102 (2014)
[27] C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene., Phys. Rev. Lett. 95 , 226801 (2005)
[28] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava and M. Z. Hasan1, A topological Dirac insulator in a quantum spin Hall phase., Nature 452 (2008)
[29] P. Delplace, D. Ullmo, G. Montambaux, Zak phase and the existence of edge states in graphene, Phys. Rev. B, 84, 195452 (2011)
[30] Erik Sauer, Juan Pablo Vasco, and Stephen Hughes, Theory of intrinsic propagation losses in topological edge states of planar photonic crystals, Phys. Rev. Research 2, 043109 (2020)
[31] Zhen Gao, Zhaoju Yang, Fei Gao, Haoran Xue, Yahui Yang, Jianwen Dong and Baile Zhang, Valley surface-wave photonic crystal and its bulk/edge transport, Phys. Rev. B, 96, 201402 (2017)
指導教授 欒丕綱 審核日期 2024-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明