博碩士論文 111226014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.135.182.13
姓名 洪煒倫(Wei-Lun Hung)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 照明藍光占比對使用者專注度之主客觀評估
(Subjective and Objective Investigation of Users’ Concentration under Different Proportions of Blue Light)
相關論文
★ 以GATE模型及系統矩陣演算法重建SPECT螺旋影像★ LED檯燈視覺舒適度研究
★ 表面電漿共振系統之相位擷取與分析★ 人眼眼球模型與視覺表現之模擬分析研究
★ 白光LED之視覺生理效應評估★ 不同色溫螢光燈用於辦公室照明之視覺效應研究
★ 表面電漿共振儀之動態相位偵測技術 與微量生物分子檢測應用★ 二次通過成像架構量測人眼的光學系統品質
★ 週期性奈米金屬結構對拉曼散射訊號增強之研究★ 日眩光要因分析研究
★ 非球面檢測之迭代相移干涉與子孔徑相位接合演算法開發★ 應用可容忍隨機位移之相移干涉術於相位式表面電漿共振系統之穩定度增進
★ 以偵測任務及系統效能評估找尋多針孔微單光子放射電腦斷層掃描系統之最佳化配置★ 結合表面電漿共振及溫度控制於免疫球蛋白鍵結之檢測分析
★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數★ 多陽極光電倍增管閃爍相機之訊號讀出系統與高效最大可能性位置估算演算法開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-1以後開放)
摘要(中) 本研究模擬室內閱讀環境,透過設計不同光譜之照明情境,探討藍光對於使用者的專注力、視覺舒適度之差異影響。研究延續先前實驗室研究團隊的照明人因評估技術,招募受試者進行心理物理學實驗,分析不同情境對受試者的影響,以獲取光譜占比因子對專注表現和視覺舒適度之影響。
本實驗設計六種具有不同藍光強度占比的情境光譜,分兩組實驗進行,在光源參數上,實驗一對色溫以及照度進行約束,實驗二額外增加對光譜分布、Duv、平均演色性指數(Ra)的限制。在實驗量測上,使用NeuroSky腦波儀記錄受試者在照明情境下進行智力測驗、d2-test以及閉眼休息的腦波訊號。後續將數據匯入程式進行分析,當中包含經驗模態分解法(Empirical mode decomposition, EMD)、希爾伯特轉換(Hilbert transform, HT)、機率密度函數(Probability density function, PDF)和接收者操作特徵曲線(Receiver operating characteristic curve, ROC curve)。而實驗的客觀評估指標為智力測驗、d2-test的作答表現,以及接收者操作特徵曲線的曲線下面積(Area under the curve, AUC),主觀指標則是情境體驗問卷。最終將實驗結果匯入SPSS統計軟體進行變異數分析,觀察情境間是否存在顯著差異,以此探討照明對使用者的影響。

研究結果顯示,受試者在不同照明情境下,兩實驗的腦波狀態與測驗表現皆無顯著差異,在主觀問卷評分上,實驗一在照明亮暗程度、刺眼頻率具有顯著差異,而實驗二則是皆無顯著差異。統整本次實驗的結論,在此實驗設計的藍光占比範圍內,並未觀測到藍光對於專注度提升的顯著效果。
摘要(英) By simulating indoor lighting environments for reading tasks, this research designs different spectral lighting conditions to explore the visual comfort and concentration effects on users under different proportions of blue light exposure. The experiment inherits the procedures designed in the team previously. Participants are recruited for psychophysical experiments to investigate the impact of this spectrum composition factor on users’ concentration performance, visual fatigue and comfort.
The experiment involves designing six lighting scenarios with different proportions of blue light and conducting two lighting experiments. Experiment one involves a fixed color temperature and illuminance, while experiment two additionally imposes restrictions on spectral distribution, Duv, and average color rendering index (Ra). For measurements, NeuroSky EEG headsets are used to record brainwave signals during IQ test, d2-test, and closed-eye rest activities under the different lighting conditions. The collected data are then analyzed by employing empirical mode decomposition (EMD), Hilbert transform (HT), probability density function (PDF), and receiver operating characteristic curve (ROC curve). The objective indicators include the performance on IQ test, d2-test, and area under the curve (AUC) of the ROC curve, while subjective indicators rely on scores from questionnaires. Finally, the experimental results are imported into the SPSS statistical software for analysis of variance (ANOVA) to investigate if there are significant differences in the indicators between lighting scenarios and to explore the impact of lighting on users.
In terms of objective indicators, there are no significant differences between brainwaves in working and resting states and test performances under different lighting scenarios for both lighting experiments. Regarding subjective indicators, results of questionnaires show significant differences in brightness perception and frequency of glare in experiment one, whereas no significant differences are observed in experiment two. Overall, under the design conditions of this research, there are no significant effects of blue light on enhancing concentration.
關鍵字(中) ★ 照明光譜
★ 藍光
★ 專注度
★ 視覺舒適度
關鍵字(英) ★ Lighting spectrum
★ blue light
★ concentration
★ visual comfort
論文目次 摘要 v
Abstract vii
致謝 ix
目錄 i
圖目錄 v
表目錄 ix
第一章 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 3
1-3 論文架構 4
1-3-1 研究假設 4
1-3-2 研究限制 4
1-3-3 研究方法與步驟 5
第二章 文獻探討 6
2-1 照明對生理的影響 6
2-1-1 非視覺系統 8
2-1-2 晝夜節律刺激值與CIE S 026 10
2-2 視覺疲勞判別 12
2-2-1 視覺疲勞的主觀評估 14
2-3 生理回饋與腦波 15
2-3-1 腦電圖 16
2-3-2 腦電位量測 17
2-4 基因演算法 21
第三章 研究方法與步驟 23
3-1 實驗設計 23
3-1-1 心理學實驗設計 24
3-1-2 視力檢查與專注力前測實驗 24
3-1-3 情境設計 26
3-2 實驗設備 32
3-2-1 可調光閱讀檯燈 32
3-2-2 光譜可調式光源箱THOUSLITE LEDCube 33
3-2-3 光源照明分析控制軟體 33
3-2-4 連接光源控制軟體照度計THOUSLITE FS 35
3-2-5 色彩照度計CL-70F 36
3-2-6 腦波儀 36
3-2-7 視力檢查儀 37
3-3 實驗環境與流程 38
3-3-1 實驗一、二環境配置 38
3-3-2 實驗流程 40
3-4 實驗內容 41
3-5 實驗資料分析方法 44
3-5-1 希爾伯特-黃轉換 44
3-5-2 經驗模態分解法 44
3-5-3 希爾伯特轉換 48
3-5-4 頻帶功率與機率密度函數 50
3-5-5 接收者操作特徵曲線 52
3-5-6 重複量數變異數分析法 55
第四章 實驗結果與討論 56
4-1 受試者招募結果 57
4-2 客觀數據分析 58
4-2-1 實驗一之腦波分析 59
4-2-2 實驗二之腦波分析 70
4-2-3 智力測驗與d2-test作答統計 81
4-3 客觀結果討論 90
4-4 主觀結果討論 91
第五章 結論與未來展望 97
5-1 結論 97
5-2 未來展望 99
參考文獻 100
附錄一 國立臺灣大學研究倫理審查核可證明書 104
附錄二 中文智力測驗內容範例 105
附錄三 主觀評估情境體驗問卷 111
附錄四 專注度指標AUC值統計表 113
參考文獻 [1] H. R. Taylor et al., “The long-term effects of visible light on the eye,” Archives of Ophthalmology, 110(1):99–104, 1992.
[2] K. E. West et al., “Blue light from light-emitting diodes elicits a dosedependent suppression of melatonin in humans,” Journal of Applied Physiology, 110(3):619–626, 2011.
[3] W. J. M. van Bommel. “Non-visual biological effect of lighting and the practical meaning for lighting for work,” Applied Ergonomics, 37(4):461–466, 2006.
[4] W. J. M. van Bommel and G. J. van den Beld. “Lighting for work: a review of visual and biological effects.” Lighting Research and Technology, 36(4):255– 266, 2004.
[5] CNS 12112 中華民國國家標準. 室內工作場所照明. 經濟部標準檢驗局, 2012.
[6] P. J. C. Sleegers, N. M. Moolenaar, M. Galetzka, A. Pruyn, B. E. Sarroukh, and B. van der Zande, “Lighting affects students’ concentration positively: Findings from three Dutch studies,” Lighting Research & Technology, 0:1-17, 2012.
[7] M. S. Mott, D. H. Robinson, A. Walden, J. Burnette, and A. S. Rutherford, “Illuminating the effects of dynamic lighting on student learning,” SAGE Open, 2(2), 2012.
[8] R. Küller., L. Wetterberg. “Melatonin, cortisol, EEG, ECG and subjective comfort in healthy humans: impact of two fluorescent lamp types at two light intensities,” Lighting Research and Technology, 1993
[9] J. Y. Shin et al., “Analysis of the effect on attention and relaxation level by correlated color temperature and illuminance of LED lighting using EEG signal,” Journal of the Korean Institute of IIIuminating and Electrical Instal- lation Engineers, 27(5):9–17, 2013.
[10] D. M. Berson, F. A. Dunn, and M. Takao. “Phototransduction by retinal ganglion cells that set the circadian clock,” Science, 295(5557):1070–1073, 2002.
[11] D. C. Fernandez et al., “Light affects mood and learning through distinct retina-brain pathways,” Cell, 175(1):71–84.e18, 2018.
[12] P. Khademagha et al., “Implementing non-image-forming effects of light in the built environment: A review on what we need,” Building and Environment, 108(1):263–272, 2016.
[13] L. F. Mohammad-Zadeh, L. Moses, and S. M. Gwaltney-Brant, “Serotonin: a review,” Journal of Veterinary Pharmacology and Therapeutics, 31(3), 187-199, 2008.
[14] A. L. B. de Pontes et al., “Serotonin and circadian rhythms,” Psychology & Neuroscience, 3(2), 217-228, 2010.
[15] Dynasolis™ White Paper. Source:
https://led-ld.nichia.co.jp/en/product/lighting_dynasolis.html
[16] LumosTech. The science behind adjusting your circadian rhythm with light.Source: https://reurl.cc/g7qE3b
[17] C. Lok, “Vision science: Seeing without seeing,” Nature, 469(7330):284-5, 2011.
[18] M.S. Rea and M.G. Figueiro, “Light as a circadian stimulus for architectural lighting,” Lighting Research and Technology, 50(4): 497-510, 2018.
[19] 網路資料,取自:
https://www.lrc.rpi.edu/healthyliving/#section-whatIsCircadianLighting
[20] Commission Internationale de l’Eclairage. CIE S 026/E:2018, CIE System for Metrology of Optical Radiation for ipRGC-Influenced Responses to Light. 2018.
[21] Commission Internationale de l’Eclairage. CIE S 026 α-opic Toolbox – v1.049a .2020. Source: https://cie.co.at/publications/cie-system-metrology-optical-radiation-iprgc-influenced-responses-light-0
[22] J. H. Chu. CHAPTER1 認識色彩. Source: https://reurl.cc/Wd2Vge
[23] J. R. Wilson and E. N. Corlett. Evaluation of Human Work, 2nd Edition. Taylor and Francis, 1995.
[24] H. Yoshitake. “Relations between the symptoms and the feeling of fatigue.” Ergonomics, 14(1):175–186, 1971.
[25] R. Likert. “A technique for the measurement of attitudes,” Archives of Psychology, 22 140, 55, 1932.
[26] M. A. Robinson. “Using multi-item psychometric scales for research and practice in human resource management,” Human Resource Management, 57(3):739–750, 2018.
[27] S. Mack et al., Principles of Neural Science, Fifth Edition. McGraw-Hill Education, 2013.
[28] H. H. Suzana. “The human brain in numbers: a linearly scaled-up primate brain,” Frontiers in Human Neuroscience, 3:31, 2009.
[29] Human EEG with prominent alpha rhythm. Source: https://reurl.cc/QdvOoZ
[30] H. Marzbani, H. R. Marateb, and M. Mansourian. “Methodological note: Neurofeedback: A comprehensive review on system design, methodology and clinical applications,” Basic and Clinical Neuroscience Journal, 7:143–158, 2016.
[31] G. Buzs´aki. “Rhythms of the Brain,” Oxford ; New York : Oxford University Press, 2006.
[32] B. McDermott et al., “Gamma band neural stimulation in humans and the promise of a new modality to prevent and treat Alzheimer’s disease,” Journal of Alzheimer’s Disease, 65(2):363–392, 2018.
[33] A. B. Usakli. “Improvement of EEG signal acquisition: An electrical aspect for state of the art of front end,” Computational Intelligence and Neuroscience, 2010, 2009.
[34] G. H. Klem et al., “The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology,” Electroencephalography and clinical neurophysiology. Supplement, 52:3–6, 1999.
[35] International 10-20 system for EEG. Source: https://reurl.cc/lVxMOA
[36] A. Llenas and J. Carreras, “Arbitrary spectral matching using multi-LED lighting systems,” Optical Engineering, 58(3), 035105, 2019.
[37] W. Hu and Wendy Davis, “Spectral optimization for human-centric lighting using a genetic algorithm and a modified Monte Carlo method,” OSA Advanced Photonics Congress (AP) 2020, paper PvM2G.4, Washington, United States, July 13–16, 2020.
[38] 蘇木春、張孝德,《機器學習:類神經網路、模糊系統以及基因演算法則》,新北市:全華圖書,2019年,第十章。
[39] K. A. Carlson. An Introduction to Statistics: An Active Learning Approach. SAGE Publications, 2016.
[40] Reader’s Digest Editors. Can You Spot the Difference in These 10 Pictures? Source: https://reurl.cc/r88xnr
[41] 陳奕傑,「室內照明情境下之靜態工作專注力評估」,國立中央大學,碩士論文,民國 109 年。
[42] National Electrical Manufacturers Association, American National Standard for Electric Lamps Specifications for the Chromaticity of Solid-state Lighting Products, ANSI-C78.377, 2015.
[43] LEDCube. Source: http://www.thouslite.com/PRODUCTS/16.html
[44] 鄭羽禎,「基於神經網路之多頻道燈箱光譜生成器」,國立中央大學,碩士論文,民國 112 年。
[45] NeuroSky. MindWave Mobile: User Guide, 2015.
[46] MindWave mobile. Source: https://www.me100fun.com.hk/products/neurosky-mindwave-mobile-2
[47] 網路資料,取自:http://11exam.com/exam/course/205297
[48] N. E. Huang et al., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454:903–995, 1998.
[49] Mr. Opengate. Time Series Analysis - Introduction to Stationary Time Series. Source: https://reurl.cc/ZO6zo3
[50] 陳佑榮,「應用希爾伯特黃轉換以C語言環境開發腦機介面訊號處理」,國立中央大學,碩士論文,民國104年。
[51] 洪暉程,「總體經驗模態分解法(EEMD)結合自回歸(AR)模型在旋轉機械之元件鬆脫故障診斷之應用」,國立中央大學,碩士論文,民國97年。
[52] 柯景瀚,「不同聲音或照明情境下室內靜態工作之專注程指標開發」,國立中央大學,碩士論文,民國 110 年。
指導教授 陳怡君(Yi-Chun Chen) 審核日期 2024-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明