參考文獻 |
[1] https://wto.cnfi.org.tw/news_detail.php?c_id=51728
[2] https://www.sale-greenlabel.com/cn/news/major_trend/detail/225
[3] 黃莉婷、王婷虹,日本能源政策評析報告,工業技術研究院綠能與環境研究所,2022。
[4] https://www.ndc.gov.tw/Content_List.aspx?n=FD76ECBAE77D9811&upn=D34BDBBBF9103806
[5] https://e-info.org.tw/node/232807
[6] https://www.materialsnet.com.tw/DocView.aspx?id=24796
[7] https://outlook.stpi.narl.org.tw/index/focus-news/4b1141007e9ee4ea017f244005161728
[8] http://www.etop.org.tw/index.php?d=epp&c=epp13911&m=show&id=597
[9] https://www.thfcp.org.tw/xcindustry/cont?xsmsid=0L265415022626956988&qcat=0L265422226276623429&sid=0L354518951400830673
[10] https://cn-heipa.com/newsinfo/6466311.html
[11] https://www.moea.gov.tw/MNS/doit/publication/Publication.aspx?menu_id=13400&pub_id=5981
[12] 黃鎮江,燃料電池,台灣台中,滄海書局,2008。
[13] IEA, Technology Roadmap Hydrogen and Fuel Cells , 2015.
[14] Mridula Biswas, “Electrolyte Materials for Solid Oxide Fuel Cell”, J Powder Metall Min, Vol. 2 Issue. 3 1000e114, 2013.
[15] I. Bello, S. Zhai, S. Zhao, Z. Li, N. Yu, M. Ni, “Scientometric review of proton-conducting solid oxide fuel cells”, International Journal of Hydrogen Energy, vol. 46, pp. 37406-37428, 2021.
[16] F. Liu, C. Duan, “Direct-hydrocarbon proton-conducting solid oxide fuel cells”, Sustainability, vol. 13, 4736, 2021.
[17] H. Shi, C. Su, R. Ran,J. Cao,Z. Shao, “Electrolyte materials for intermediate-temperature solid oxide fuel cells”, Progress in Natural Science: Materials International, vol. 30, pp. 764-774, 2020.
[18] W. Tana,D. Huana,W. Yanga,N. Shia, W. Wanga, R. Peng, X. Wu, “A first-principles study on divergent reactions of using a Sr3Fe2O7 cathode in both oxygen ion conducting and proton conducting solid oxide fuel cell”, RSC Advances, vol. 8, pp. 26448-26460, 2018.
[19] I. T. Bello, S. Zhai, S. Zhao, Z. Li, N. Yu, M. Ni, “Scientometric review of proton-conducting solid oxide fuel cells”, International Journal of Hydrogen Energy, vol. 46, pp. 37406-37428, 2021
[20] I. Bello, S. Zhai, S. Zhao, Z. Li, N. Yu, M. Ni, “Scientometric review of proton-conducting solid oxide fuel cells”, International Journal of Hydrogen Energy, vol. 46, pp. 37406-37428, 2021.
[21] I. T. Bello, S. Zhai, S. Zhao, Z. Li, N. Yu, M. Ni, “Scientometric review of proton-conducting solid oxide fuel cells”, International Journal of Hydrogen Energy, vol. 46, pp. 37406-37428, 2021.
[22] J. H. Lee, J. W. Heo, D. S. Lee, J. Kim, G. H. Kim, H. W. Lee, H. S. Song, J. H. Moon,“The impact of anode microstructure on the power generating characteristics of SOFC”, Solid State Ionics, vol. 158, pp. 225-232, 2003.
[23] S. P. S. Shaikh, A. Muchtar, M. R. Somalu, “A review on the selection of anode materials for solid-oxide fuel cells”, Renewable and Sustainable Energy Reviews, vol. 51, pp. 1-8, 2015.
[24] Y. Liu, Z. Shao, T. Mori, S. P. Jiang, “Development of nickel based cermet anode materials in solid oxide fuel cells - Now and future”, Materials Reports: Energy, vol. 1, pp. 100003, 2021.
[25] S. Dwivedi, “Solid oxide fuel cell: Materials for anode, cathode and electrolyte”, International Journal of Hydrogen Energy, vol. 45, pp. 23988-24013, 2020.
[26] S. Alipour, E. Sagir, A. Sadeghi, “Multi-criteria decision-making approach assisting to select materials for low-temperature solid oxide fuel cell: Electrolyte, cathode& anode”, International Journal of Hydrogen Energy, vol. 47, pp. 19810-19820, 2022.
[27] S. J. Skinner, “Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes”, International Journal of Inorganic Materials, vol. 3, pp. 113-121, 2001.
[28] A. Jun, J. Kim, J. Shin, G. Kim, “Perovskite as a Cathode Material: A Review of its Role in Solid‐Oxide Fuel Cell Technology”, ChemElectroChem, vol. 3, pp. 511-530, 2016.
[29] K. Xie, R. Yan, X. Liu, “A novel anode supported BaCe0.4Zr0.3Sn0.1Y0.2O3−δ electrolyte membrane for proton conducting solid oxide fuel cells”, Electrochemistry Communications, vol. 11, pp. 1618-1622, 2009.
[30] H. Moon, S.D. Kim, E.W. Park, S.H. Hyun, H.S. Kim, “Characteristics of SOFC single cells with anode active layer via tape casting and co-firing”, International Journal of Hydrogen Energy, vol. 33, pp. 2826-2833, 2008.
[31] K.V. Galloway and N.M. Sammes, “Fuel cell - Solid oxide fuel cells Anode Reference Module in Chemistry, Molecular Sciences and Chemical Engineering,” Encyclopedia of Electrochem. Power Sources, 17-24, 2009.
[32] J. Rossmeisl, W. G. Bessler, “Trends in catalytic activity for SOFC anode materials”, Solid State Ionics, vol. 178, pp. 1694-1700, 2008.
[33] B. H. Rainwater, M. Liu, M. Liu, “A more efficient anode microstructure for SOFCs based on proton conductors”, International Journal of Hydrogen Energy, vol. 37, pp. 18342-18348, 2012.
[34] J. J. Haslam, A. Q. Pham, B. W. Chung, J. F. DiCarlo, R. S. Glass, “Effects of the Use of Pore Formers on Performance of an Anode Supported Solid Oxide Fuel Cell”, Journal of the American Ceramic Society, vol. 88, pp. 513-518, 2005.
[35] F. Zhao, and A.V. Virkar, “Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters”, Journal of Power Sources, vol. 141, pp. 79-95, 2005.
[36] C. Sun and U. Stimming, “Recent anode advances in solid oxide fuel cells”, Journal of Power Sources, vol. 171, pp. 247-260, 2007.
[37] S. McIntosh and R. J. Gorte, “Direct Hydrocarbon Solid Oxide Fuel Cells”, Chemical Reviews, vol. 104, pp. 4845-4866, 2004.
[38] A. Essoumhi, G. Taillades, M. Taillades-Jacquin, D.J. Jones, J. Roziere, “Synthesis and characterization of Ni-cermet/proton conducting thin film electrolyte symmetrical assemblies”, Solid State Ionics, vol. 179, pp. 2155-2159, 2008.
[39] A. Arabac, M.F. Öksüzömer, “Preparation and characterization of 10 mol% Gd doped CeO2 (GDC) electrolyte for SOFC applications”, Ceramics International, vol. 38, pp. 6509-6515, 2012.
[40] W. Zhang, Y. H. Hu, “Progress in proton‐conducting oxides as electrolytes for low‐temperature solid oxide fuel cells: From materials to devices”, Energy Science & Engineering, vol. 9, pp. 984-1011, 2021.
[41] H. Iwahara, T. Esaka, H. Uchida, T. Yamauchi, K. Ogaki, “High temperature type protonic conductor based on SrCeO3 and its application to the extraction of hydrogen gas”, Solid State Ionics, vol. 18-19, pp. 1003-1007, 1986.
[42] H. Iwahara, Y. Asakura, K. Katahira, M. Tanaka, “Prospect of hydrogen technology using proton-conducting ceramics”, Solid State Ionics, vol. 168, pp. 299-310, 2004.
[43] C. W. Tanner, A. V. Virkar, “InstabiIiiy of BoCeO3 in H2O-Containing Atmospheres”, Journal of the Electrochemical Society, vol. 143, 1996.
[44] H. Matsumoto, Y. Kawasaki, N. Ito, M. Enoki, T. Ishihara, “Relation between electrical conductivity and chemical stability of BaCeO3-based proton conductors with different trivalent dopants”, Electrochemical and Solid-State Letters, vol. 10, pp. B77-B80, 2007.
[45] K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara, “Protonic conduction in Zr-substituted BaCeO3”, Solid State Ionics, vol. 138, pp. 91-98, 2000.
[46] R. V. Kumar, A. P. Khandale, “A review on recent progress and selection of cobalt-based cathode materials for low temperature-solid oxide fuel cells”, Renewable and Sustainable Energy Reviews, vol. 156, pp. 111985, 2022.
[47] M. Z. Ahmad, S. H. Ahmad, R. S. Chen, A. F. Ismail, R. Hazan, N. A. Baharuddin, “Review on recent advancement in cathode material for lower and intermediate temperature solid oxide fuel cells application”, International Journal of Hydrogen Energy, vol. 47, pp. 1103-1120, 2022.
[48] C. M. Harrison, P. R. Slater, R. Steinberger-Wilckens, “A review of Solid Oxide Fuel Cell cathode materials with respect to their resistance to the effects of chromium poisoning”, Solid State Ionics, vol. 354, pp. 115410, 2020.
[49] L. P. Sun, M. Rieu, J. P. Viricelle, C. Pijolat, H. Zhao, “Fabrication and characterization of anode-supported single chamber solid oxide fuel cell based on La0.6Sr0.4Co0.2Fe0.8O3−δ–Ce0.9Gd0.1O1.95 composite cathode”, International Journal of Hydrogen Energy, vol. 39, pp. 1014-1022, 2014.
[50] Y. Tao, H. Nishino, S. Ashidate, H. Kokubo, M. Watanabe, H. Uchida, “Polarization properties of La0.6Sr0.4Co0.2Fe0.8O3-based double layer-type oxygen electrodes for reversible SOFCs”, Electrochimica Acta, vol. 54, pp. 3309-3315, 2009.
[51] K. Banerjee, J. Mukhopadhyay, R. N. Basu, “Nanocrystalline doped lanthanum cobalt ferrite and lanthanum iron cobaltite-based composite cathode for significant augmentation of electrochemical performance in solid oxide fuel cell”, International Journal of Hydrogen Energy, vol. 39, pp. 15754-15759, 2014.
[52] J. Laurencin, G. Delette, O. Sicardy, S. Rosini, F. Lefebvre-Joud, “Impact of ‘redox’ cycles on performances of solid oxide fuel cells: Case of the electrolyte supported cells”, Journal of Power Sources, vol. 195, pp. 2747-2753, 2010.
[53] K. Xie, R. Q. Yan, X. Q. Liu, “A novel anode supported BaCe0.4Zr0.3Sn0.1Y0.2O3−δ electrolyte membrane for proton conducting solid oxide fuel cells”, Electrochemistry Communications, vol. 11, pp. 1618-1622, 2009.
[54] K. Huang, S. C. Singhal, “Cathode-supported tubular solid oxide fuel cell technology: A critical review”, Journal of Power Sources, vol. 237, pp.84-97, 2013.
[55] N. A. Baharuddin, N. F. A. Rahman, H. A. Rahman, M. R. Somalu, M. A. Azmi, J. Raharjo, “Fabrication of high-quality electrode films for solid oxide fuel cell by screen printing: A review on important processing parameters”, International Journal of Energy Research, vol. 44, pp. 8296-8313, 2020.
[56] P. Holtappels, C. Sorof, M. C. Verbraeken, S. Rambert, U. Vogt, “Preparation of Porosity–Graded SOFC Anode Substrates”, Fuel Cells, vol. 6, pp.113-116, 2006..
[57] J. W. Kim, A. V. Virkar, “The Effect of Anode Thickness on the Performance of Anode-Supported Solid Oxide Fuel Cells”, ECS Proceedings Volumes, vol. 1999-19, Sixth International Symposium on Solid Oxide Fuel Cells (SOFC-VI), 1999.
[58] S. Y. Shin, D. K. Lim, T. Lee, S. Y. Jeon, “The Effect of the Anode Thickness on Electrolyte Supported SOFCs” , J. Electrochem. Sci. Technol, Korea Electric Power Corp. Research Institute, Daejeon 34056, 2022.
[59] A. Sarikaya, F. Dogan, “Effect of various pore formers on the microstructural development of tape-cast porous ceramics” , Ceramics International, Vol. 39, Issue 1, pp 403-413, 2013.
[60] L. Mingyi, Y. Bo, X. Jingming, C. Jing, “Influence of pore formers on physical properties and microstructures of supporting cathodes of solid oxide electrolysis cells” , International Journal of Hydrogen Energy, Vol. 35 , pp 2670-2674, 2010.
[61] M. A. L. Bercero, A. R. Hanifi, L. Menand, N. K. Sandhu, N. E. Anderson, T. H. Etsell, P. Sarkar, “The effect of pore-former morphology on the electrochemical performance of solid oxide fuel cells under combined fuel cell and electrolysis modes” , Electrochimica Acta, Vol. 268, pp 195-201, 2018.
[62] J. Zhou, Q. Liu, L. Zhang, Z. Pan, S. H. Chan, “Influence of pore former on electrochemical performance of fuel-electrode supported SOFCs manufactured by aqueous-based tape-casting” , Energy, Vol. 115, pp 149-154, 2016.
[63] H. Shimada, T. Suzuki, T. Yamaguchi, H. Sumi, K. Hamamoto, Y. Fujishiro, “Challenge for lowering concentration polarization in solid oxide fuel cells”, Journal of Power Sources, Vol. 302, pp 53-60, 2016.
[64] B. A. Horri, C. Selomulya, H. Wang, “Characteristics of Ni/YSZ ceramic anode prepared using carbon microspheres as a pore former”, International Journal of Hydrogen Energy, Vol. 37, Issue 20, pp 15311-15319, 2012.
[65] J. Hu, Z. Lü, K. Chen, X. Huang, N. Ai, X. Du, C. Fu, J. Wang, W. Su, “Effect of composite pore-former on the fabrication and performance of anode-supported membranes for SOFCs”, Journal of Membrane Science, Vol. 318, Issues 1–2, pp 445-451, 2008.
[66] Y. Ostrovskiy, M. Saqib, J. Hong, E. Wachsman, “Optimization of SOFC Anode Microstructure for Performance and Highly Scalable Cells through Graded Porosity”, ECS Meeting Abstracts, Vol. MA2023-01, 2023.
[67] M. Rafique, H. Nawaz, M. S. Rafique, M. B. Tahir, G. Nabi, N. R. Khalid, “Material and method selection for efficient solid oxide fuel cell anode: Recent advancements and reviews”, International Journal of Energy Research, vol. 43, pp. 2423-2446, 2018.
[68] J. Epp, “4 - X-ray diffraction (XRD) techniques for materials characterization”, Materials Characterization Using Nondestructive Evaluation (NDE) Methods, pp. 81-124, 2016..
[69] F. Y. Zhu, Q. Q. Wang, X. S. Zhang, W. Hu, X. Zhao, H. X. Zhang, “3D nanostructure reconstruction based on the SEM imaging principle, and applications”, Nanotechnology, vol. 25, pp. 185705, 2014.
[70] A. V. Virkar, J. Chen, C. W. Tanner, J. W. Kim, “The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells”, Solid State Ionics, vol. 131, pp. 189-198, 2000.
[71] Q. A. Huang, R. Hui, B. Wang, J. Zhang, “A review of AC impedance modeling and validation in SOFC diagnosis”, Electrochimica Acta, vol. 52, pp. 8144-8164, 2007.
[72] K. Wang, D. Hissel, M. C. Péra, N. Steiner, D. Marra, M. Sorrentino, C. Pianese, M. Monteverde, P. Cardone, J. Saarinen, “A Review on solid oxide fuel cell models”, International Journal of Hydrogen Energy, vol. 36, pp. 7212-7228, 2011.
[73] A. Nechache, M. Cassir, A. Ringuedé, “Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: A review”, Journal of Power Sources, vol. 258, pp. 164-181, 2014. |