博碩士論文 110328602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.145.111.115
姓名 馬柏彥(FAHIM ABYAN MAKARIM)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱
(An Exploration of the Efficacy of NiCo/NiCoOx Hydrogenation Treatment)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 中文質子傳輸型固態氧化物燃料電池陽極之研究★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究
★ 發展應用脈衝雷射沉積製備奈米顆粒堆疊多孔觸媒層與滴塗聚苯並咪唑介面層製作高溫型質子交換膜燃料電池★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 多孔材應用於質子交換膜燃料電池散熱之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-9-1以後開放)
摘要(中) 層狀雙氫氧化物 (LDH) 和/或氧化物催化劑是許多科學論文中最常研究的催化劑。然而,
隨著時間的推移,研究的新穎性和貢獻性要求已經將這些催化劑研究主題推向一些需
要“過於複雜”結構工程的“極端”角落。在這項研究中,提供了一種更“經典”和相對方便
的催化劑合成方法。將氫氣流入已經合成的氫氧化物和/或氧化物結構中,這種方法簡
稱為氫化。在這項研究中,發現空氣氣氛下的預熱處理效果是多餘的。這一點已由“空
氣煅燒”和“直接組”兩組樣本之間的微小差異證明,這兩組分別代表在空氣氣氛下有和
沒有預熱處理。研究發現,在氫析出反應( HER) 中,在相應電位值下,以 4 小時氫
化持續時間的空氣煅燒樣本和 4 小時氫化持續時間的直接氫化樣本的電流密度達到最
高電化學性能,記錄的電位分別為 -207 mV @ -100 mA.cm-2; -120 mV @ -10 mA.cm-2
和 -195 mV @ -100 mA.cm-2; -111 mV @ -10 mA.cm-2。對於氧析出反應( OER), 在相
應電位值下,以原始樣品的電流密度達到最高電化學性能,記錄的電位為 1628 mV @
100 mA.cm-2; 1516 mV @ 10 mA.cm-2。
摘要(英) Layered double hydroxide (LDH) and or oxide catalysts are the two most commonly
studied catalysts in many scientific papers. As time progressed, however, the nature of newness
and contribution-seeking of the research have pushed these catalyst study topics into some
“extreme” corners which required the involvement of “overly complicated” structures
engineering. In this study, a more “classic” and relatively convenient catalyst synthesis method
is offered. Flowing hydrogen into an already synthesized hydroxide and or oxide structure is
the definition of the method discussed, called hydrogenation in short. In this study, the effect
of pre-heat treatment under an air atmosphere is found to be redundant. Proven by the
insignificant differences between the two groups specimens of “air calcined” and “direct group”,
which stand for with and without pre-heat treatment under an air atmosphere. It is found that
The highest electrochemical performances in terms of current density achieved at the respective
potential values for HER are achieved by 4 hours of hydrogenation durations for air-calcined
specimens and 4 hours of hydrogenation durations of a directly hydrogenated specimen with
the recorded potential of -207 mV @ -100 mA.cm-2; -120 mV @ -10 mA.cm-2 and -195 mV @
-100 mA.cm-2; -111 mV @ -10 mA.cm-2, in order. While for the OER, the highest
electrochemical performance was achieved by the pristine sample in terms of current density
per respective potential values, with the recorded potential of 1628 mV @ 100 mA.cm-2; 1516
mV @ 10 mA.cm-2
關鍵字(中) ★ 層狀雙氫氧化物 (LDH)
★ 氧化物催化劑
★ 氫化
★ 時間參數研究
★ 鎳-鈷基催化 劑
★ 氫氣析出反應 (HER)
關鍵字(英) ★ Layered Double Hydroxide (LDH)
★ Oxide catalyst
★ Hydrogenation
★ Duration parameter study
★ nickel–cobalt-based catalyst
★ Hydrogen Evolution Reaction (HER)
論文目次 摘要 ______________________________________________________________________ i
Abstract___________________________________________________________________ ii
Acknowledgment ___________________________________________________________iii
Table of Content ____________________________________________________________ v
List of Figures_____________________________________________________________viii
List of Tables ______________________________________________________________ x
List of symbols _____________________________________________________________xi
1 Introduction ____________________________________________________________ 1
1.1 Research background_________________________________________________ 1
1.2 Research purpose ____________________________________________________ 3
1.3 Research Topic _____________________________________________________ 3
1.4 Scope of the study (Disclaimer)_________________________________________ 3
2 Literature review ________________________________________________________ 4
2.1 Electrolysis_________________________________________________________ 4
2.2 Water electrolysis mechanism __________________________________________ 5
2.3 Main source references _______________________________________________ 6
2.3.1 NiCo/NiCoOx nanohybrid _________________________________________ 6
2.3.2 NiCo2S4________________________________________________________ 7
2.3.3 MoNi4 _________________________________________________________ 9
2.4 Electrocatalyst benchmarking _________________________________________ 11
2.5 Electrochemical and material characterization methods _____________________ 13
2.5.1 Linear sweep voltammetry (LSV) __________________________________ 13
2.5.2 Electrochemical impedance spectroscopy (EIS) _______________________ 14
2.5.3 Stability Test___________________________________________________ 16
2.5.4 Scanning electron microscopy (SEM) _______________________________ 18
2.5.5 Energy Dispersive X-ray Spectroscopy (EDS) ________________________ 20
2.5.6 X-ray diffraction (XRD)__________________________________________ 22
3 Experimental Procedure _________________________________________________ 23
3.1 Research flow chart _________________________________________________ 23
3.2 Variables of the study _______________________________________________ 24vi
3.3 Synthesis method scheme and materials _________________________________ 25
3.3.1 The hydrothermal method ________________________________________ 25
3.3.2 The Air calcination treatment and hydrogenation ______________________ 26
3.4 Equipment used ____________________________________________________ 28
4 Results and Discussion __________________________________________________ 30
4.1 LSV (Linear Sweep Voltammetry) _____________________________________ 30
4.1.1 HER of the “Air calcined group”___________________________________ 30
4.1.2 HER of the “Direct group”________________________________________ 32
4.1.3 OER of the “Air calcined group”___________________________________ 34
4.1.4 OER of the “Direct group”________________________________________ 36
4.2 Tafel slope ________________________________________________________ 38
4.2.1 HER – Tafel slope of the “Air calcined group” ________________________ 38
4.2.2 HER – Tafel slope of the “Direct group”_____________________________ 40
4.2.3 OER – Tafel slope of the “Air calcined group”________________________ 42
4.2.4 OER – Tafel slope of the “Direct group”_____________________________ 44
4.3 Repeatability test ___________________________________________________ 46
4.3.1 Repeatability test for HER – LSV of the “Air calcined group”____________ 46
4.3.2 Repeatability test for HER – LSV of the “Direct group” ________________ 48
4.3.3 Repeatability test for OER – LSV of the “Air calcined group”____________ 50
4.3.4 Repeatability test for OER – LSV of the “Direct group” ________________ 52
4.4 EIS (Electrochemical Impedance Spectroscopy) __________________________ 54
4.4.1 EIS of the “Air calcined group” at HER potential ______________________ 54
4.4.2 EIS of the “Direct group” at HER potential___________________________ 56
4.4.3 EIS of the “Air calcined group” at OER potential ______________________ 58
4.4.4 EIS of the “Direct group” at OER potential___________________________ 60
4.5 SEM (Scanning electron microscopy)___________________________________ 62
4.5.1 Pristine _______________________________________________________ 62
4.5.2 Air calcined – 2 hours ___________________________________________ 64
4.5.3 Air calcined – 4 hours ___________________________________________ 66
4.5.4 Air calcined – 6 hours ___________________________________________ 68
4.5.5 Air calcined – 8 hours ___________________________________________ 70
4.5.6 Direct – 2 hours ________________________________________________ 72
4.5.7 Direct – 4 hours ________________________________________________ 74
4.5.8 Direct – 6 hours ________________________________________________ 76
4.5.9 Direct – 8 hours ________________________________________________ 78vii
4.6 EDS (Energy Dispersive X-ray Spectroscopy) ____________________________ 80
4.6.1 Pristine _______________________________________________________ 80
4.6.2 Air calcined – 2 hours____________________________________________ 82
4.6.3 Air calcined – 4 hours____________________________________________ 84
4.6.4 Air calcined – 6 hours____________________________________________ 86
4.6.5 Air calcined – 8 hours____________________________________________ 88
4.6.6 Direct – 2 hours ________________________________________________ 90
4.6.7 Direct – 4 hours ________________________________________________ 92
4.6.8 Direct – 6 hours ________________________________________________ 94
4.6.9 Direct – 8 hours ________________________________________________ 96
4.7 X-ray diffraction (XRD) _____________________________________________ 98
4.7.1 X-ray diffraction (XRD) of the “Air calcined group” and “Direct group” ___ 98
4.8 Data connections __________________________________________________ 100
5 Conclusion and Suggestion ______________________________________________ 103
5.1 Conclusion _______________________________________________________ 103
5.2 Suggestion _______________________________________________________ 104
References ______________________________________________________________ 105
參考文獻 [1] R. E.Oesper andM.Speter, “The Faraday-Whewell Correspondence Concerning ElectroChemical Terms,” Sci. Mon., vol. 45, no. 6, pp. 535–546, Dec.1937.
[2] Supplement to the third edition of the Encyclopaedia Britannica, vol. 1. Edinburgh: A.
Bell and C. Macfarquhar, 1803.
[3] E.Fabbri andT. J.Schmidt, “Oxygen Evolution Reaction—The Enigma in Water
Electrolysis,” ACS Catal., vol. 8, no. 10, pp. 9765–9774, Oct.2018, doi:
10.1021/acscatal.8b02712.
[4] L.Zhang, J.Xiao, H.Wang, andM.Shao, “Carbon-Based Electrocatalysts for Hydrogen
and Oxygen Evolution Reactions,” ACS Catal., vol. 7, no. 11, pp. 7855–7865, Nov.2017,
doi: 10.1021/acscatal.7b02718.
[5] T.Liang et al., “Interface and valence modulation on scalable phosphorene/phosphide
lamellae for efficient water electrolysis,” Chem. Eng. J., vol. 395, p. 124976, 2020, doi:
https://doi.org/10.1016/j.cej.2020.124976.
[6] H.Xu, H.Shang, C.Wang, andY.Du, “Surface and interface engineering of noble-metalfree electrocatalysts for efficient overall water splitting,” Coord. Chem. Rev., vol. 418,
p. 213374, 2020, doi: https://doi.org/10.1016/j.ccr.2020.213374.
[7] J.Wang, F.Xu, H.Jin, Y.Chen, andY.Wang, “Non-Noble Metal-based Carbon
Composites in Hydrogen Evolution Reaction: Fundamentals to Applications,” Adv.
Mater., vol. 29, no. 14, p. 1605838, 2017, doi: https://doi.org/10.1002/adma.201605838.
[8] J.Shi, M.Hong, Z.Zhang, Q.Ji, andY.Zhang, “Physical properties and potential
applications of two-dimensional metallic transition metal dichalcogenides,” Coord.
Chem. Rev., vol. 376, pp. 1–19, 2018, doi: https://doi.org/10.1016/j.ccr.2018.07.019.
[9] Y.Shi andB.Zhang, “Recent advances in transition metal phosphide nanomaterials:
synthesis and applications in hydrogen evolution reaction,” Chem. Soc. Rev., vol. 45, no.
6, pp. 1529–1541, 2016, doi: 10.1039/C5CS00434A.
[10] J. F.Callejas, C. G.Read, C. W.Roske, N. S.Lewis, andR. E.Schaak, “Synthesis,
Characterization, and Properties of Metal Phosphide Catalysts for the HydrogenEvolution Reaction,” Chem. Mater., vol. 28, no. 17, pp. 6017–6044, Sep.2016, doi:
10.1021/acs.chemmater.6b02148.
[11] L.Sun, Q.Luo, Z.Dai, andF.Ma, “Material libraries for electrocatalytic overall water
splitting,” Coord. Chem. Rev., vol. 444, p. 214049, 2021, doi: 10.1016/j.ccr.2021.214049.
[12] B.Zhu, D.Xia, andR.Zou, “Metal-organic frameworks and their derivatives as
bifunctional electrocatalysts,” Coord. Chem. Rev., vol. 376, pp. 430–448, 2018, doi:
https://doi.org/10.1016/j.ccr.2018.07.020.
[13] D.Yang, Y.Chen, Z.Su, X.Zhang, W.Zhang, andK.Srinivas, “Organic carboxylate-based
MOFs and derivatives for electrocatalytic water oxidation,” Coord. Chem. Rev., vol. 428,
p. 213619, 2021, doi: https://doi.org/10.1016/j.ccr.2020.213619.
[14] L.Lei et al., “Defects engineering of bimetallic Ni-based catalysts for electrochemical
energy conversion,” Coord. Chem. Rev., vol. 418, p. 213372, 2020, doi:
https://doi.org/10.1016/j.ccr.2020.213372.
[15] S.Kempahanumakkagari, K.Vellingiri, A.Deep, E. E.Kwon, N.Bolan, andK.-H.Kim,
“Metal–organic framework composites as electrocatalysts for electrochemical sensing
applications,” Coord. Chem. Rev., vol. 357, pp. 105–129, 2018, doi:
https://doi.org/10.1016/j.ccr.2017.11.028.
[16] Q.Liang, J.Chen, F.Wang, andY.Li, “Transition metal-based metal-organic frameworks
for oxygen evolution reaction,” Coord. Chem. Rev., vol. 424, p. 213488, 2020, doi:
https://doi.org/10.1016/j.ccr.2020.213488.
[17] X.Li, C.Wang, H.Xue, H.Pang, andQ.Xu, “Electrocatalysts optimized with nitrogen
coordination for high-performance oxygen evolution reaction,” Coord. Chem. Rev., vol.
422, p. 213468, 2020, doi: https://doi.org/10.1016/j.ccr.2020.213468.
[18] E.Katz, “Electrochemical contributions: Julius Tafel (1862–1918),” Electrochem. Sci.
Adv., vol. 2, no. 4, p. e2260002, 2022, doi: https://doi.org/10.1002/elsa.202260002.
[19] M. H.deSá, “Electrochemical Devices to Power a Sustainable Energy Transition—An
Overview of Green Hydrogen Contribution,” Appl. Sci., vol. 14, no. 5, 2024, doi:
10.3390/app14052168.
[20] N. M.Pirozzi, J.Kuipers, andB. N. G.Giepmans, “Chapter 5 - Sample preparation for
energy dispersive X-ray imaging of biological tissues,” in Correlative Light and Electron
Microscopy IV, vol. 162, T.Müller-Reichert andP.Verkade, Eds.Academic Press, 2021,
pp. 89–114. doi: https://doi.org/10.1016/bs.mcb.2020.10.023.
[21] H.Jin, J.Wang, D.Su, Z.Wei, Z.Pang, andY.Wang, “In situ Cobalt–Cobalt Oxide/NDoped Carbon Hybrids As Superior Bifunctional Electrocatalysts for Hydrogen and
Oxygen Evolution,” J. Am. Chem. Soc., vol. 137, no. 7, pp. 2688–2694, Feb.2015, doi:
10.1021/ja5127165.
[22] M.Gong et al., “Nanoscale nickel oxide/nickel heterostructures for active hydrogen
evolution electrocatalysis,” Nat. Commun., vol. 5, no. 1, p. 4695, 2014, doi:
10.1038/ncomms5695.
[23] X.Yan et al., “From water oxidation to reduction: Transformation from NixCo3-xO4
nanowires to NiCo/NiCoOx heterostructures,” ACS Appl. Mater. Interfaces, vol. 8, no.
5, pp. 3208–3214, 2016, doi: 10.1021/acsami.5b10724.
[24] Y.Liu et al., “Electrochemical tuning of olivine-type lithium transition-metal phosphates
as efficient water oxidation catalysts,” Energy Environ. Sci., vol. 8, no. 6, pp. 1719–1724,
2015, doi: 10.1039/C5EE01290B.
[25] H.Wang et al., “Bifunctional non-noble metal oxide nanoparticle electrocatalysts
through lithium-induced conversion for overall water splitting,” Nat. Commun., vol. 6,
no. 1, p. 7261, 2015, doi: 10.1038/ncomms8261.
[26] H.Wang, Z.Lu, D.Kong, J.Sun, T. M.Hymel, andY.Cui, “Electrochemical Tuning of
MoS2 Nanoparticles on Three-Dimensional Substrate for Efficient Hydrogen Evolution,”
ACS Nano, vol. 8, no. 5, pp. 4940–4947, May2014, doi: 10.1021/nn500959v.
[27] H.Wang et al., “Electrochemical tuning of vertically aligned MoS2 nanofilms and its
application in improving hydrogen evolution reaction,” Proc. Natl. Acad. Sci., vol. 110,
no. 49, pp. 19701–19706, 2013, doi: 10.1073/pnas.1316792110.
[28] Z.Lu et al., “Electrochemical tuning of layered lithium transition metal oxides for
improvement of oxygen evolution reaction,” Nat. Commun., vol. 5, no. 1, p. 4345, 2014,
doi: 10.1038/ncomms5345.
[29] Y. H.Li et al., “Local atomic structure modulations activate metal oxide as electrocatalyst
for hydrogen evolution in acidic water,” Nat. Commun., vol. 6, no. 1, p. 8064, 2015, doi:
10.1038/ncomms9064.
[30] X.Yan, L.Tian, andX.Chen, “Crystalline/amorphous Ni/NiO core/shell nanosheets as
highly active electrocatalysts for hydrogen evolution reaction,” J. Power Sources, vol.
300, pp. 336–343, 2015, doi: https://doi.org/10.1016/j.jpowsour.2015.09.089.
[31] X.Yan, L.Tian, M.He, andX.Chen, “Three-Dimensional Crystalline/Amorphous
Co/Co3O4 Core/Shell Nanosheets as Efficient Electrocatalysts for the Hydrogen
Evolution Reaction,” Nano Lett., vol. 15, no. 9, pp. 6015–6021, Sep.2015, doi:
10.1021/acs.nanolett.5b02205.
[32] S.Wang, A.Lu, andC.-J.Zhong, “Hydrogen production from water electrolysis: role of
catalysts,” Nano Converg., vol. 8, no. 1, p. 4, 2021, doi: 10.1186/s40580-021-00254-x.
[33] A. J.Shih et al., “Water electrolysis,” Nat. Rev. Methods Prim., vol. 2, no. 1, p. 84, 2022,
doi: 10.1038/s43586-022-00164-0.
[34] F.-T.Tsai et al., “The HER/OER mechanistic study of an FeCoNi-based electrocatalyst
for alkaline water splitting,” J. Mater. Chem. A, vol. 8, no. 19, pp. 9939–9950, 2020, doi:
10.1039/D0TA01877E.
[35] J.Song et al., “A review on fundamentals for designing oxygen evolution
electrocatalysts,” Chem. Soc. Rev., vol. 49, no. 7, pp. 2196–2214, 2020, doi:
10.1039/C9CS00607A.
[36] J.Yu, Q.He, G.Yang, W.Zhou, Z.Shao, andM.Ni, “Recent Advances and Prospective in
Ruthenium-Based Materials for Electrochemical Water Splitting,” ACS Catal., vol. 9, no.
11, pp. 9973–10011, Nov.2019, doi: 10.1021/acscatal.9b02457.
[37] N.-T.Suen, S.-F.Hung, Q.Quan, N.Zhang, Y.-J.Xu, andH. M.Chen, “Electrocatalysis for
the oxygen evolution reaction: recent development and future perspectives,” Chem. Soc.
Rev., vol. 46, no. 2, pp. 337–365, 2017, doi: 10.1039/C6CS00328A.
[38] A.Sivanantham, P.Ganesan, andS.Shanmugam, “Hierarchical NiCo2S4 Nanowire
Arrays Supported on Ni Foam: An Efficient and Durable Bifunctional Electrocatalyst for
Oxygen and Hydrogen Evolution Reactions,” Adv. Funct. Mater., vol. 26, no. 26, pp.
4661–4672, 2016, doi: 10.1002/adfm.201600566.
[39] J.Zhang et al., “Efficient hydrogen production on MoNi 4 electrocatalysts with fast water
dissociation kinetics,” Nat. Commun., vol. 8, no. May, pp. 1–8, 2017, doi:
10.1038/ncomms15437.
[40] C.Zhang et al., “Titanium Dioxide and N-Doped Carbon Hybrid Nanofiber Modulated
Ru Nanoclusters for High-Efficient Hydrogen Evolution Reaction Electrocatalyst,”
Small, vol. n/a, no. n/a, p. 2311667, doi: https://doi.org/10.1002/smll.202311667.
[41] L.Zhang, X.Shi, A.Xu, W.Zhong, J.Zhang, andS.Shen, “Novel CoP/CoMoP2
heterojunction with nanoporous structure as an efficient electrocatalyst for hydrogen
evolution,” Nano Res., vol. 17, no. 5, pp. 3693–3699, 2024, doi: 10.1007/s12274-023-
6270-1.
[42] J.Ding et al., “Dealloyed NiTiZrAg as an efficient electrocatalyst for hydrogen evolution
in alkaline seawater,” Int. J. Hydrogen Energy, vol. 53, pp. 318–324, 2024, doi:
https://doi.org/10.1016/j.ijhydene.2023.12.007.
[43] Y.Li et al., “Interface regulation of Zr-MOF/Ni2P@nickel foam as high-efficient
electrocatalyst for pH-universal hydrogen evolution reaction,” J. Colloid Interface Sci.,
vol. 656, pp. 289–296, 2024, doi: https://doi.org/10.1016/j.jcis.2023.11.113.
[44] J.Lin et al., “Ni-doped ZnIn2S4 on stainless steel mesh as self-standing pH-all
electrocatalyst for hydrogen evolution,” Int. J. Hydrogen Energy, 2024, doi:
https://doi.org/10.1016/j.ijhydene.2024.02.291.
[45] Q.Kang et al., “Mo2C regulated by cobalt components in N-doped carbon networks as
pH-universal electrocatalyst for hydrogen evolution reaction,” Int. J. Hydrogen Energy,
vol. 57, pp. 1325–1331, 2024, doi: https://doi.org/10.1016/j.ijhydene.2024.01.109.
[46] Y.Zhang et al., “Ni/MoC@NC as bifunctional electrocatalyst coupled HER and Urea
oxidation for energy-efficient hydrogen production,” Int. J. Hydrogen Energy, vol. 60,
pp. 46–54, 2024, doi: https://doi.org/10.1016/j.ijhydene.2024.02.106.
[47] M.Liu, Z.Liu, C.Xiang, Y.Zou, F.Xu, andL.Sun, “MoS2-CuCo2S4 nanosheets with a
honeycomb structure formed on Ni foam: An efficient electrocatalyst for hydrogen
evolution reaction,” J. Alloys Compd., vol. 988, p. 174300, 2024, doi:
https://doi.org/10.1016/j.jallcom.2024.174300.
[48] K. W.Ahmed, M. J.Jang, M. G.Park, Z.Chen, andM.Fowler, “Effect of Components and
Operating Conditions on the Performance of PEM Electrolyzers: A Review,”
Electrochem, vol. 3, no. 4, pp. 581–612, 2022, doi: 10.3390/electrochem3040040.
[49] I.VPushkareva, M. A.Solovyev, S. I.Butrim, M.VKozlova, D. A.Simkin, andA.
S.Pushkarev, “On the Operational Conditions’ Effect on the Performance of an Anion
Exchange Membrane Water Electrolyzer: Electrochemical Impedance Spectroscopy
Study,” Membranes (Basel)., vol. 13, no. 2, 2023, doi: 10.3390/membranes13020192.
[50] N.Shibayama, Y.Zhang, T.Satake, andM.Sugiyama, “Modelling of an equivalent circuit
for Cu2ZnSnS4- and Cu2ZnSnSe4-based thin film solar cells,” RSC Adv., vol. 7, no. 41,
pp. 25347–25352, 2017, doi: 10.1039/C7RA02274C.
[51] Y.Liu, L.Wang, D.Li, andK.Wang, “State-of-health estimation of lithium-ion batteries
based on electrochemical impedance spectroscopy: a review,” Prot. Control Mod. Power
Syst., vol. 8, no. 1, p. 41, 2023, doi: 10.1186/s41601-023-00314-w.
[52] D.Li et al., “Durability of anion exchange membrane water electrolyzers,” Energy
Environ. Sci., vol. 14, no. 6, pp. 3393–3419, 2021, doi: 10.1039/D0EE04086J.
[53] A.Tahira, Z. H.Ibupoto, M.Willander, andO.Nur, “Advanced Co3O4–CuO nanocomposite based electrocatalyst for efficient hydrogen evolution reaction in alkaline
media,” Int. J. Hydrogen Energy, vol. 44, no. 48, pp. 26148–26157, 2019, doi:
https://doi.org/10.1016/j.ijhydene.2019.08.120.
[54] E.Kuhnert, M.Heidinger, D.Sandu, V.Hacker, andM.Bodner, “Analysis of PEM Water
Electrolyzer Failure Due to Induced Hydrogen Crossover in Catalyst-Coated PFSA
Membranes,” Membranes (Basel)., vol. 13, no. 3, 2023, doi:
10.3390/membranes13030348.
[55] C.Liu et al., “Degradation Effects at the Porous Transport Layer/Catalyst Layer Interface
in Polymer Electrolyte Membrane Water Electrolyzer,” J. Electrochem. Soc., vol. 170,
no. 3, p. 34508, Mar.2023, doi: 10.1149/1945-7111/acc1a5.
[56] M.Tare, O.Puli, S.Oros, andA.Singh, “Drosophila adult eye model to teach Scanning
Electron Microscopy in an undergraduate cell biology laboratory,” Popul. Data Inf. Serv.,
vol. 92, pp. 174–180, 2009.
[57] D. A.Kushwaha, H.Tyagi, andM.Aslam, “Role of defect states in magnetic and electrical
properties of ZnO nanowires,” AIP Adv., vol. 3, p. (2013), 2013, doi: 10.1063/1.4801937.
[58] C.Laskar et al., “Exploring Platinum Speciation with X-ray Absorption Spectroscopy
under High-Energy Resolution Fluorescence Detection Mode,” Minerals, vol. 12, no. 12,
2022, doi: 10.3390/min12121602.
[59] C.Giannini, M.Ladisa, D.Altamura, D.Siliqi, T.Sibillano, andL.DeCaro, “X-ray
Diffraction: A Powerful Technique for the Multiple-Length-Scale Structural Analysis of
Nanomaterials,” Crystals, vol. 6, no. 8, 2016, doi: 10.3390/cryst6080087.
[60] A.VLlewellyn, A.Matruglio, D. J. L.Brett, R.Jervis, andP. R.Shearing, “Using In-Situ
Laboratory and Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries
Characterization: A Review on Recent Developments,” Condens. Matter, vol. 5, no. 4,
2020, doi: 10.3390/condmat5040075.
[61] R.Zhang et al., “Ternary NiCo2Px Nanowires as pH-Universal Electrocatalysts for
Highly Efficient Hydrogen Evolution Reaction,” Adv. Mater., vol. 29, no. 9, pp. 2–7,
2017, doi: 10.1002/adma.201605502.
指導教授 曾重仁(Tseng, Chung-jen) 審核日期 2024-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明