參考文獻 |
[1] R. E.Oesper andM.Speter, “The Faraday-Whewell Correspondence Concerning ElectroChemical Terms,” Sci. Mon., vol. 45, no. 6, pp. 535–546, Dec.1937.
[2] Supplement to the third edition of the Encyclopaedia Britannica, vol. 1. Edinburgh: A.
Bell and C. Macfarquhar, 1803.
[3] E.Fabbri andT. J.Schmidt, “Oxygen Evolution Reaction—The Enigma in Water
Electrolysis,” ACS Catal., vol. 8, no. 10, pp. 9765–9774, Oct.2018, doi:
10.1021/acscatal.8b02712.
[4] L.Zhang, J.Xiao, H.Wang, andM.Shao, “Carbon-Based Electrocatalysts for Hydrogen
and Oxygen Evolution Reactions,” ACS Catal., vol. 7, no. 11, pp. 7855–7865, Nov.2017,
doi: 10.1021/acscatal.7b02718.
[5] T.Liang et al., “Interface and valence modulation on scalable phosphorene/phosphide
lamellae for efficient water electrolysis,” Chem. Eng. J., vol. 395, p. 124976, 2020, doi:
https://doi.org/10.1016/j.cej.2020.124976.
[6] H.Xu, H.Shang, C.Wang, andY.Du, “Surface and interface engineering of noble-metalfree electrocatalysts for efficient overall water splitting,” Coord. Chem. Rev., vol. 418,
p. 213374, 2020, doi: https://doi.org/10.1016/j.ccr.2020.213374.
[7] J.Wang, F.Xu, H.Jin, Y.Chen, andY.Wang, “Non-Noble Metal-based Carbon
Composites in Hydrogen Evolution Reaction: Fundamentals to Applications,” Adv.
Mater., vol. 29, no. 14, p. 1605838, 2017, doi: https://doi.org/10.1002/adma.201605838.
[8] J.Shi, M.Hong, Z.Zhang, Q.Ji, andY.Zhang, “Physical properties and potential
applications of two-dimensional metallic transition metal dichalcogenides,” Coord.
Chem. Rev., vol. 376, pp. 1–19, 2018, doi: https://doi.org/10.1016/j.ccr.2018.07.019.
[9] Y.Shi andB.Zhang, “Recent advances in transition metal phosphide nanomaterials:
synthesis and applications in hydrogen evolution reaction,” Chem. Soc. Rev., vol. 45, no.
6, pp. 1529–1541, 2016, doi: 10.1039/C5CS00434A.
[10] J. F.Callejas, C. G.Read, C. W.Roske, N. S.Lewis, andR. E.Schaak, “Synthesis,
Characterization, and Properties of Metal Phosphide Catalysts for the HydrogenEvolution Reaction,” Chem. Mater., vol. 28, no. 17, pp. 6017–6044, Sep.2016, doi:
10.1021/acs.chemmater.6b02148.
[11] L.Sun, Q.Luo, Z.Dai, andF.Ma, “Material libraries for electrocatalytic overall water
splitting,” Coord. Chem. Rev., vol. 444, p. 214049, 2021, doi: 10.1016/j.ccr.2021.214049.
[12] B.Zhu, D.Xia, andR.Zou, “Metal-organic frameworks and their derivatives as
bifunctional electrocatalysts,” Coord. Chem. Rev., vol. 376, pp. 430–448, 2018, doi:
https://doi.org/10.1016/j.ccr.2018.07.020.
[13] D.Yang, Y.Chen, Z.Su, X.Zhang, W.Zhang, andK.Srinivas, “Organic carboxylate-based
MOFs and derivatives for electrocatalytic water oxidation,” Coord. Chem. Rev., vol. 428,
p. 213619, 2021, doi: https://doi.org/10.1016/j.ccr.2020.213619.
[14] L.Lei et al., “Defects engineering of bimetallic Ni-based catalysts for electrochemical
energy conversion,” Coord. Chem. Rev., vol. 418, p. 213372, 2020, doi:
https://doi.org/10.1016/j.ccr.2020.213372.
[15] S.Kempahanumakkagari, K.Vellingiri, A.Deep, E. E.Kwon, N.Bolan, andK.-H.Kim,
“Metal–organic framework composites as electrocatalysts for electrochemical sensing
applications,” Coord. Chem. Rev., vol. 357, pp. 105–129, 2018, doi:
https://doi.org/10.1016/j.ccr.2017.11.028.
[16] Q.Liang, J.Chen, F.Wang, andY.Li, “Transition metal-based metal-organic frameworks
for oxygen evolution reaction,” Coord. Chem. Rev., vol. 424, p. 213488, 2020, doi:
https://doi.org/10.1016/j.ccr.2020.213488.
[17] X.Li, C.Wang, H.Xue, H.Pang, andQ.Xu, “Electrocatalysts optimized with nitrogen
coordination for high-performance oxygen evolution reaction,” Coord. Chem. Rev., vol.
422, p. 213468, 2020, doi: https://doi.org/10.1016/j.ccr.2020.213468.
[18] E.Katz, “Electrochemical contributions: Julius Tafel (1862–1918),” Electrochem. Sci.
Adv., vol. 2, no. 4, p. e2260002, 2022, doi: https://doi.org/10.1002/elsa.202260002.
[19] M. H.deSá, “Electrochemical Devices to Power a Sustainable Energy Transition—An
Overview of Green Hydrogen Contribution,” Appl. Sci., vol. 14, no. 5, 2024, doi:
10.3390/app14052168.
[20] N. M.Pirozzi, J.Kuipers, andB. N. G.Giepmans, “Chapter 5 - Sample preparation for
energy dispersive X-ray imaging of biological tissues,” in Correlative Light and Electron
Microscopy IV, vol. 162, T.Müller-Reichert andP.Verkade, Eds.Academic Press, 2021,
pp. 89–114. doi: https://doi.org/10.1016/bs.mcb.2020.10.023.
[21] H.Jin, J.Wang, D.Su, Z.Wei, Z.Pang, andY.Wang, “In situ Cobalt–Cobalt Oxide/NDoped Carbon Hybrids As Superior Bifunctional Electrocatalysts for Hydrogen and
Oxygen Evolution,” J. Am. Chem. Soc., vol. 137, no. 7, pp. 2688–2694, Feb.2015, doi:
10.1021/ja5127165.
[22] M.Gong et al., “Nanoscale nickel oxide/nickel heterostructures for active hydrogen
evolution electrocatalysis,” Nat. Commun., vol. 5, no. 1, p. 4695, 2014, doi:
10.1038/ncomms5695.
[23] X.Yan et al., “From water oxidation to reduction: Transformation from NixCo3-xO4
nanowires to NiCo/NiCoOx heterostructures,” ACS Appl. Mater. Interfaces, vol. 8, no.
5, pp. 3208–3214, 2016, doi: 10.1021/acsami.5b10724.
[24] Y.Liu et al., “Electrochemical tuning of olivine-type lithium transition-metal phosphates
as efficient water oxidation catalysts,” Energy Environ. Sci., vol. 8, no. 6, pp. 1719–1724,
2015, doi: 10.1039/C5EE01290B.
[25] H.Wang et al., “Bifunctional non-noble metal oxide nanoparticle electrocatalysts
through lithium-induced conversion for overall water splitting,” Nat. Commun., vol. 6,
no. 1, p. 7261, 2015, doi: 10.1038/ncomms8261.
[26] H.Wang, Z.Lu, D.Kong, J.Sun, T. M.Hymel, andY.Cui, “Electrochemical Tuning of
MoS2 Nanoparticles on Three-Dimensional Substrate for Efficient Hydrogen Evolution,”
ACS Nano, vol. 8, no. 5, pp. 4940–4947, May2014, doi: 10.1021/nn500959v.
[27] H.Wang et al., “Electrochemical tuning of vertically aligned MoS2 nanofilms and its
application in improving hydrogen evolution reaction,” Proc. Natl. Acad. Sci., vol. 110,
no. 49, pp. 19701–19706, 2013, doi: 10.1073/pnas.1316792110.
[28] Z.Lu et al., “Electrochemical tuning of layered lithium transition metal oxides for
improvement of oxygen evolution reaction,” Nat. Commun., vol. 5, no. 1, p. 4345, 2014,
doi: 10.1038/ncomms5345.
[29] Y. H.Li et al., “Local atomic structure modulations activate metal oxide as electrocatalyst
for hydrogen evolution in acidic water,” Nat. Commun., vol. 6, no. 1, p. 8064, 2015, doi:
10.1038/ncomms9064.
[30] X.Yan, L.Tian, andX.Chen, “Crystalline/amorphous Ni/NiO core/shell nanosheets as
highly active electrocatalysts for hydrogen evolution reaction,” J. Power Sources, vol.
300, pp. 336–343, 2015, doi: https://doi.org/10.1016/j.jpowsour.2015.09.089.
[31] X.Yan, L.Tian, M.He, andX.Chen, “Three-Dimensional Crystalline/Amorphous
Co/Co3O4 Core/Shell Nanosheets as Efficient Electrocatalysts for the Hydrogen
Evolution Reaction,” Nano Lett., vol. 15, no. 9, pp. 6015–6021, Sep.2015, doi:
10.1021/acs.nanolett.5b02205.
[32] S.Wang, A.Lu, andC.-J.Zhong, “Hydrogen production from water electrolysis: role of
catalysts,” Nano Converg., vol. 8, no. 1, p. 4, 2021, doi: 10.1186/s40580-021-00254-x.
[33] A. J.Shih et al., “Water electrolysis,” Nat. Rev. Methods Prim., vol. 2, no. 1, p. 84, 2022,
doi: 10.1038/s43586-022-00164-0.
[34] F.-T.Tsai et al., “The HER/OER mechanistic study of an FeCoNi-based electrocatalyst
for alkaline water splitting,” J. Mater. Chem. A, vol. 8, no. 19, pp. 9939–9950, 2020, doi:
10.1039/D0TA01877E.
[35] J.Song et al., “A review on fundamentals for designing oxygen evolution
electrocatalysts,” Chem. Soc. Rev., vol. 49, no. 7, pp. 2196–2214, 2020, doi:
10.1039/C9CS00607A.
[36] J.Yu, Q.He, G.Yang, W.Zhou, Z.Shao, andM.Ni, “Recent Advances and Prospective in
Ruthenium-Based Materials for Electrochemical Water Splitting,” ACS Catal., vol. 9, no.
11, pp. 9973–10011, Nov.2019, doi: 10.1021/acscatal.9b02457.
[37] N.-T.Suen, S.-F.Hung, Q.Quan, N.Zhang, Y.-J.Xu, andH. M.Chen, “Electrocatalysis for
the oxygen evolution reaction: recent development and future perspectives,” Chem. Soc.
Rev., vol. 46, no. 2, pp. 337–365, 2017, doi: 10.1039/C6CS00328A.
[38] A.Sivanantham, P.Ganesan, andS.Shanmugam, “Hierarchical NiCo2S4 Nanowire
Arrays Supported on Ni Foam: An Efficient and Durable Bifunctional Electrocatalyst for
Oxygen and Hydrogen Evolution Reactions,” Adv. Funct. Mater., vol. 26, no. 26, pp.
4661–4672, 2016, doi: 10.1002/adfm.201600566.
[39] J.Zhang et al., “Efficient hydrogen production on MoNi 4 electrocatalysts with fast water
dissociation kinetics,” Nat. Commun., vol. 8, no. May, pp. 1–8, 2017, doi:
10.1038/ncomms15437.
[40] C.Zhang et al., “Titanium Dioxide and N-Doped Carbon Hybrid Nanofiber Modulated
Ru Nanoclusters for High-Efficient Hydrogen Evolution Reaction Electrocatalyst,”
Small, vol. n/a, no. n/a, p. 2311667, doi: https://doi.org/10.1002/smll.202311667.
[41] L.Zhang, X.Shi, A.Xu, W.Zhong, J.Zhang, andS.Shen, “Novel CoP/CoMoP2
heterojunction with nanoporous structure as an efficient electrocatalyst for hydrogen
evolution,” Nano Res., vol. 17, no. 5, pp. 3693–3699, 2024, doi: 10.1007/s12274-023-
6270-1.
[42] J.Ding et al., “Dealloyed NiTiZrAg as an efficient electrocatalyst for hydrogen evolution
in alkaline seawater,” Int. J. Hydrogen Energy, vol. 53, pp. 318–324, 2024, doi:
https://doi.org/10.1016/j.ijhydene.2023.12.007.
[43] Y.Li et al., “Interface regulation of Zr-MOF/Ni2P@nickel foam as high-efficient
electrocatalyst for pH-universal hydrogen evolution reaction,” J. Colloid Interface Sci.,
vol. 656, pp. 289–296, 2024, doi: https://doi.org/10.1016/j.jcis.2023.11.113.
[44] J.Lin et al., “Ni-doped ZnIn2S4 on stainless steel mesh as self-standing pH-all
electrocatalyst for hydrogen evolution,” Int. J. Hydrogen Energy, 2024, doi:
https://doi.org/10.1016/j.ijhydene.2024.02.291.
[45] Q.Kang et al., “Mo2C regulated by cobalt components in N-doped carbon networks as
pH-universal electrocatalyst for hydrogen evolution reaction,” Int. J. Hydrogen Energy,
vol. 57, pp. 1325–1331, 2024, doi: https://doi.org/10.1016/j.ijhydene.2024.01.109.
[46] Y.Zhang et al., “Ni/MoC@NC as bifunctional electrocatalyst coupled HER and Urea
oxidation for energy-efficient hydrogen production,” Int. J. Hydrogen Energy, vol. 60,
pp. 46–54, 2024, doi: https://doi.org/10.1016/j.ijhydene.2024.02.106.
[47] M.Liu, Z.Liu, C.Xiang, Y.Zou, F.Xu, andL.Sun, “MoS2-CuCo2S4 nanosheets with a
honeycomb structure formed on Ni foam: An efficient electrocatalyst for hydrogen
evolution reaction,” J. Alloys Compd., vol. 988, p. 174300, 2024, doi:
https://doi.org/10.1016/j.jallcom.2024.174300.
[48] K. W.Ahmed, M. J.Jang, M. G.Park, Z.Chen, andM.Fowler, “Effect of Components and
Operating Conditions on the Performance of PEM Electrolyzers: A Review,”
Electrochem, vol. 3, no. 4, pp. 581–612, 2022, doi: 10.3390/electrochem3040040.
[49] I.VPushkareva, M. A.Solovyev, S. I.Butrim, M.VKozlova, D. A.Simkin, andA.
S.Pushkarev, “On the Operational Conditions’ Effect on the Performance of an Anion
Exchange Membrane Water Electrolyzer: Electrochemical Impedance Spectroscopy
Study,” Membranes (Basel)., vol. 13, no. 2, 2023, doi: 10.3390/membranes13020192.
[50] N.Shibayama, Y.Zhang, T.Satake, andM.Sugiyama, “Modelling of an equivalent circuit
for Cu2ZnSnS4- and Cu2ZnSnSe4-based thin film solar cells,” RSC Adv., vol. 7, no. 41,
pp. 25347–25352, 2017, doi: 10.1039/C7RA02274C.
[51] Y.Liu, L.Wang, D.Li, andK.Wang, “State-of-health estimation of lithium-ion batteries
based on electrochemical impedance spectroscopy: a review,” Prot. Control Mod. Power
Syst., vol. 8, no. 1, p. 41, 2023, doi: 10.1186/s41601-023-00314-w.
[52] D.Li et al., “Durability of anion exchange membrane water electrolyzers,” Energy
Environ. Sci., vol. 14, no. 6, pp. 3393–3419, 2021, doi: 10.1039/D0EE04086J.
[53] A.Tahira, Z. H.Ibupoto, M.Willander, andO.Nur, “Advanced Co3O4–CuO nanocomposite based electrocatalyst for efficient hydrogen evolution reaction in alkaline
media,” Int. J. Hydrogen Energy, vol. 44, no. 48, pp. 26148–26157, 2019, doi:
https://doi.org/10.1016/j.ijhydene.2019.08.120.
[54] E.Kuhnert, M.Heidinger, D.Sandu, V.Hacker, andM.Bodner, “Analysis of PEM Water
Electrolyzer Failure Due to Induced Hydrogen Crossover in Catalyst-Coated PFSA
Membranes,” Membranes (Basel)., vol. 13, no. 3, 2023, doi:
10.3390/membranes13030348.
[55] C.Liu et al., “Degradation Effects at the Porous Transport Layer/Catalyst Layer Interface
in Polymer Electrolyte Membrane Water Electrolyzer,” J. Electrochem. Soc., vol. 170,
no. 3, p. 34508, Mar.2023, doi: 10.1149/1945-7111/acc1a5.
[56] M.Tare, O.Puli, S.Oros, andA.Singh, “Drosophila adult eye model to teach Scanning
Electron Microscopy in an undergraduate cell biology laboratory,” Popul. Data Inf. Serv.,
vol. 92, pp. 174–180, 2009.
[57] D. A.Kushwaha, H.Tyagi, andM.Aslam, “Role of defect states in magnetic and electrical
properties of ZnO nanowires,” AIP Adv., vol. 3, p. (2013), 2013, doi: 10.1063/1.4801937.
[58] C.Laskar et al., “Exploring Platinum Speciation with X-ray Absorption Spectroscopy
under High-Energy Resolution Fluorescence Detection Mode,” Minerals, vol. 12, no. 12,
2022, doi: 10.3390/min12121602.
[59] C.Giannini, M.Ladisa, D.Altamura, D.Siliqi, T.Sibillano, andL.DeCaro, “X-ray
Diffraction: A Powerful Technique for the Multiple-Length-Scale Structural Analysis of
Nanomaterials,” Crystals, vol. 6, no. 8, 2016, doi: 10.3390/cryst6080087.
[60] A.VLlewellyn, A.Matruglio, D. J. L.Brett, R.Jervis, andP. R.Shearing, “Using In-Situ
Laboratory and Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries
Characterization: A Review on Recent Developments,” Condens. Matter, vol. 5, no. 4,
2020, doi: 10.3390/condmat5040075.
[61] R.Zhang et al., “Ternary NiCo2Px Nanowires as pH-Universal Electrocatalysts for
Highly Efficient Hydrogen Evolution Reaction,” Adv. Mater., vol. 29, no. 9, pp. 2–7,
2017, doi: 10.1002/adma.201605502. |