博碩士論文 111523014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.14.129.236
姓名 陳昱霖(Yu-Lin Chen)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 具空時排列之空時區塊編碼的空間調變
(Space-Time Block-Coded Spatial Modulation with Spatial and Temporal Permutations)
相關論文
★ 全像光資訊儲存系統的編解碼★ 具有快速改變載波相位之籬柵編碼MPSK 的非同調解碼
★ 用於非同調解碼之多層次編碼調變★ 么正空間時間籬柵碼之解碼演算法
★ 由多層次編碼所架構之非同調碼★ 用於非同調檢測之與空時區塊碼連結的區塊編碼調變
★ 用於正交分頻多工系統具延遲處理器的空時碼★ 用於非同調區塊編碼MPSK之A*解碼演算法
★ 在塊狀衰退通道上的籬柵么正空時調變★ 用於非同調區塊編碼MPSK之Chase演算法
★ 使用決定回授檢測之相差空時調變的 一種趨近同調特性★ 具延遲處理器的空時碼之軟式輸入輸出遞迴解碼
★ 用於非同調區塊編碼MPSK的最大可能性解碼演算法★ 具頻寬效益之非同調調變
★ 非同調空時渦輪碼★ 循環字首及補零正交分頻多工系統經預編碼後之頻譜比較
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 在先前的空時區塊編碼(Space-time block-coded, STBC)之空間調變(spatial modulation, SM)中,使用時間排列以增加傳送速率,在本篇論文中,我們提出兩種空時區塊編碼之空間調變(Space-time block-coded spatial modulation, STBC-SM)的排列方式以增加傳送速率。第一種是我們嘗試不對時間進行排列而是對空間進行排列,該方案被稱為具有空間排列的空時區塊編碼(STBC-SM with spatial permutation)。在第二種架構中,除了原本存在於空時區塊編碼之相差空間調變的時間排列外,我們結合了空間上的排列。透過選擇時間與空間的排列樣式,比起現有的空時區塊編碼之空間調變具有更高的頻寬效益。該方案被稱為具有空間與時間排列的空時區塊編碼(STBC-SM with spatial and temporal permutation)。所提出的空間與時間排列可應用於其他STBC-SM方案以提高其頻譜效率。分析電腦模擬結果表明,除了頻寬效率的優勢之外,從電腦模擬可以看出,使用空間與時間排列的STBC-SM系統比原始系統提供更好的錯誤率表現。
摘要(英) In the previous spatial modulation (SM) with space-time block coded (STBC) scheme, temporal permutation was employed to increase spectral efficiency. In this paper, we propose two methods to further enhance the spectral efficiency of spatial modulation with STBC. The first method involves arranging antennas instead of time, termed as STBC-SM with Spatial Permutation(STBC-SM-SP). In the second framework, in addition to the temporal permutation inherent in STBC-SM, we integrate spatial permutation. By selecting patterns of temporal and spatial permutation, our proposed scheme, termed as STBC-SM with Spatial and Temporal Permutation(STBC-SM-STP), achieves higher bandwidth efficiency compared to existing spatial modulation with STBC. The introduced temporal and spatial permutations can be applied to other STBC-SM schemes to enhance their spectral efficiency. Analysis of computer simulation results demonstrates that, apart from the bandwidth efficiency advantage, the STBC-SM system with Spatial and Temporal permutations design provide better error performance than the original system.
關鍵字(中) ★ 空間調變
★ 空時區塊編碼
關鍵字(英) ★ spatial modulation
★ space-time block code
論文目次 摘要 IV
Abstract V
致謝 VI
目錄 VII
圖目錄 IX
表目錄 XI
第一章 緒論 1
1.1 背景與研究動機 1
第二章 相關背景回顧 3
2.1 通道模型和STBC-SM方案回顧 3
2.2 具時間排列之區塊編碼的空間調變 5
2.2.1 傳送端 5
2.2.2 排列樣式 8
2.2.3 具時間排列之區塊編碼的空間調變範例 12
2.2.4 低複雜最大可能性檢測器 15
第三章 具空間排列的空時區塊編碼之空間調變 17
3.1 空間排列定義與使用空間排列的原形架構 17
3.2 用在論文[6]的排列樣式 20
3.3 具空間排列之區塊編碼的空間調變例子 24
3.4 低複雜最大可能性檢測器 27
3.5 模擬結果 29
第四章 具空時排列的空時區塊編碼之空間調變 34
4.1 傳送端架構及排列樣式 34
4.2 具空時排列之區塊編碼的空間調變例子 36
4.3 低複雜最大可能性檢測器 40
4.4 性能分析 42
4.5 適用架構 45
4.6 模擬結果 46
第五章 結論 54
參考文獻 55
參考文獻 [1] R. Mesleh, H. Haas, S. Sinanovic, C. Ahn, and S. Yun, “Spatial modulation,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228–2242, Jul. 2008.
[2] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation: Optimal detection and performance analysis,” IEEE Commun. Lett., vol. 12,no. 8, pp. 545–547, Aug. 2008.
[3] M. Renzo, H. Haas, and P. Grant, “Spatial modulation for multiple-antenna wireless systems: A survey,” IEEE Commun. Mag., vol. 49,no. 12, pp. 182–191, Dec. 2011.
[4] P. Yang, M. D. Renzo, Y. Xiao, S. Li and L. Hanzo, “Design guidelines for spatial modulation,” IEEE Commun. Surveys & Tutorials, vol. 17, no. 1, pp. 6-26, First Quarter 2015.
[5] M. Wen, B. Zheng, K. J. Kim, M. Renzo, T. A. Tsiftsis, K.-C. Chen, and N. Al-Dhahir, “A survey on spatial modulation in emerging wireless systems: Research progresses and applications”, IEEE J. Select. Areas Commun., vol. 37, pp. 1949-1972, Sep. 2019.
[6] E. Basar, U. Aygolu, E. Panayirci and H. V. Poor, “Space-time block coded spatial modulation,” IEEE Trans. Commun., vol. 59, no. 3, pp. 823-832, Mar. 2011.
[7] X. Li and L. Wang, “High rate space-time block coded spatial modulation with cyclic structure,” IEEE Commun. Lett., vol. 18, no. 4, pp. 532535, Apr. 2014.
[8] A. G. Helmy, M. Di Renzo, and N. Al-Dhahir, “Enhanced-reliability cyclic generalized spatial-and-temporal modulation,” IEEE Commun. Lett., vol. 20, no. 12, pp. 23742377, Dec. 2016.
[9] L. Wang, “Stacked Alamouti based spatial modulation,” IEEE Trans. Commun., vol. 67, no. 1, pp.336-349, Jan. 2019.
[10] L. Wang and Z. Chen, “High-rate spatial modulation transmission scheme with block-orthogonal structure and block-by-block sphere decoding,” IEEE Access, vol. 8, no. 1, pp. 7032-7039, Jan. 2020.
[11] M. T. Le, V. D. Ngo, H. A. Mai, X. N. Tran, and M. Di Renzo, “Spatially modulated orthogonal space-time block codes with nonvanishing determinants,” IEEE Trans. Commun., vol. 62, no. 1, pp. 85-99, Jan. 2014.
[12] M. T. Le, T. D. Nguyen, and V. D. Ngo, “On the combination of double space time transmit diversity with spatial modulation,” IEEE Trans. Wireless Comm., vol. 17, no. 1, pp. 170-181, Jan. 2018.
[13] C. Jeon and J. W. Lee, “Multi-strata space-time coded spatial modulation,” IEEE Commun. Lett., vol. 19, no. 11, pp. 19451948, Nov. 2015.
[14] L. Xiao, D. Chen, I. Hemadeh, P. Xiao, and T. Jiang, “Generalized space time block coded spatial modulation for open-loop massive mimo downlink communication systems,” IEEE Trans. Commun., vol. 68, no. 11, pp. 6858-6871, Nov. 2020.
[15] S. M. Alamouti, “A simple transmitter diversity scheme for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451- 1458, Oct. 1998.
[16] R. Mesleh, S. S. Ikki, and H. M. Aggoune, “Quadrature spatial modulation,” IEEE Trans. Veh. Technol., vol. 64, no. 6, pp. 2738-2742, Jun. 2015.
[17] L. Wang, Z. Chen, Z. Gong, and M. Wu, “Diversity-achieving quadrature spatial modulation,” IEEE Trans. Veh. Technol., vol. 66, no. 12, pp. 10764-10775, Dec. 2017.
[18] L. Wang and Z. Chen, “Enhanced diversity-achieving quadrature spatial modulation with fast decodability,” IEEE Trans. Veh. Technol., vol. 69, no. 6, pp. 6165-6177, Jun. 2020.
[19] C. Li, L. Wang, and G. Nie, “Quadrature spatial modulation with the fourth order transmit diversity and low-complexity sphere decoding for large-scale MIMO systems”, IEEE Trans. Veh. Technol., vol. 71, no.8, pp.8603-8614, Aug. 2022.
[20] R. Y. Wei, S. L. Chen, Y. H. Lin, and B. C. Chen, “Bandwidth-efficient generalized differential spatial modulation,” IEEE Trans. Veh. Technol. , vol. 72, no. 1, pp. 601-610, Jan. 2023.
[21] R. Y. Wei, C. W. Chang, and Y. F. Cheng, “Temporal permutations in different accumulated blocks of space-time block-coded spatial modulation,” IEEE Trans. Veh. Technol., 2024 (revised).
[22] V. Tarokh, N. Seshadri and A. R. Calderbank, “Space-time codes for high data rate wireless communication: Performance criterion and code construction,” IEEE Trans. Inform. Theory, vol. 44, pp. 744-765, Mar. 1998.
[23] M. S. Alaouni and M. K. Simon, Digital Communications over Fading Channels, 2nd Edition, John & Wiley, 2005.
指導教授 魏瑞益(Ruey-Yi Wei) 審核日期 2024-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明