博碩士論文 111523007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:111 、訪客IP:3.17.187.35
姓名 陳君易(Chun-Yi Chen)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 具空時排列之空時區塊編碼的相差空間調變
(Space-Time Block coded Differential Spatial Modulation with Spatial and Temporal Permutations)
相關論文
★ 全像光資訊儲存系統的編解碼★ 具有快速改變載波相位之籬柵編碼MPSK 的非同調解碼
★ 用於非同調解碼之多層次編碼調變★ 么正空間時間籬柵碼之解碼演算法
★ 由多層次編碼所架構之非同調碼★ 用於非同調檢測之與空時區塊碼連結的區塊編碼調變
★ 用於正交分頻多工系統具延遲處理器的空時碼★ 用於非同調區塊編碼MPSK之A*解碼演算法
★ 在塊狀衰退通道上的籬柵么正空時調變★ 用於非同調區塊編碼MPSK之Chase演算法
★ 使用決定回授檢測之相差空時調變的 一種趨近同調特性★ 具延遲處理器的空時碼之軟式輸入輸出遞迴解碼
★ 用於非同調區塊編碼MPSK的最大可能性解碼演算法★ 具頻寬效益之非同調調變
★ 非同調空時渦輪碼★ 循環字首及補零正交分頻多工系統經預編碼後之頻譜比較
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在先前的空時區塊編碼之相差空間調變中,透過選擇時間與空間的排列模式,來達到更高的頻寬效益,但只有以4根傳送天線為例。而在本篇論文中,我們推導出具空時排列的空時區塊編碼之相差空間調變的最大天線位元數量,並驗證先前所提出的4根傳送天線時符合最大天線位元數量,然後,提出在6根或8根傳送天線時的排列模式,而其個數也符合我們所推導的最大天線位元數量,在我們所提出的6根或8根傳送天線中,其頻譜效率也高於先前的例子。在解碼端,我們為了降低位元錯誤率以及降低解碼複雜度,我們分別提出了最佳籬柵圖檢測以及降低籬柵圖狀態個數的低複雜並帶有決策回饋的最大相似(ML)檢測器。另一方面,我們提出了一種用於相差空間調變的低複雜最大相似檢測器,而此方法也適用於空時區塊編碼之相差空間調變,我們也將這一方法用在前面所提出的具空時排列的空時區塊編碼之相差空間調變,來簡化其解碼複雜度。
摘要(英) In the previous space-time block coded differential spatial modulation with spatial and temporal permutations (STBC-DSM-STP), higher bandwidth efficiency is achieved through selecting patterns of temporal permutation and spatial permutation, using the example of 4 transmit antennas. In this paper, we derive the maximum number of antenna bits for STBC-DSM-STP, and verify that the previously proposed 4 transmit antennas meets the maximum antenna bits. Furthermore, we propose permutation patterns for 6 or 8 transmit antennas, which also adhere to our derived maximum antenna bit . In our proposed examples, their spectral efficiency is also higher than the earlier examples. In the decoding process, in order to reduce bit error rates and decoding complexity, we have proposed the optimal trellis diagram detection and the low-complexity maximum likelihood (ML) detector with reduced trellis state count and decision feedback. On the other hand, we propose a low-complexity maximum likelihood detector for differential spatial modulation, which is also applicable to space-time block coded differential spatial modulation. We apply this method to the previously proposed STBC-DSM-STP to simplify its complexity.
關鍵字(中) ★ 空時區塊編碼
★ 相差空間調變
關鍵字(英) ★ Space-Time Block coded
★ Differential Spatial Modulation
論文目次 摘要 IV
Abstract V
致謝 VI
目錄 VII
圖目錄 IX
表目錄 X
第一章 緒論 1
1.1 背景與研究動機 1
第二章 相關背景回顧 5
2.1 相差空間調變和空時區塊編碼之相差空間調變 5
2.2空時交錯的區塊編碼之相差空間調變 8
2.2.1 空間排列設計 8
2.2.2 傳送端架構 10
2.2.3 接收端架構 14
第三章 空時交錯的區塊編碼之相差空間調變 17
3.1 排列樣式個數和解碼端的性能分析 17
3.2 帶有決策回饋的低複雜最大可能性檢測 22
3.3 使用儲存S ̃(t-1)可能值的籬柵圖進行檢測 25
3.4 模擬結果 27
第四章 33
4.1 利用ML檢測進行相差空間調變 33
4.2 利用非ML檢測進行相差空間調變 34
4.3 相差空間調變的檢測 36
4.4 空時區塊編碼之相差空間調變的檢測 40
第五章 42
參考文獻 43
參考文獻 [1] R. Mesleh, H. Haas, S. Sinanovic, C. Ahn, and S. Yun, “Spatial modulation,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228–2242, Jul. 2008.
[2] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation: Optimal detection and performance analysis,” IEEE Commun. Lett., vol. 12,no. 8, pp. 545–547, Aug. 2008.
[3] Y. Bian, X. Cheng, M. Wen, L. Yang, H. V. Poor, and B. Jiao,“Differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 64,no. 7, pp. 3262-3268, Jul. 2015.
[4] L. Xiao, Y. Xiao, P. Yang, J. Jiu, S. Li, and W. Xiang, “Space-time block coded differential spatial modulation,” IEEE Trans. Veh. Technol.,vol. 66, no. 10, pp. 8821-8834, Oct. 2017.
[5] S. M. Alamouti, “A simple transmitter diversity scheme for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998.
[6] A. G. Helmy, M. D. Renzo, and N. Al-Dhahir, “Differential spatially modulated space-time block codes with temporal permutations,” IEEE Trans. Veh. Technol., vol. 66, no. 8, pp. 7548-7552, Aug. 2017.
[7] R. Y. Wei, S. L. Chen, Y. H. Lin, and B. C. Chen, “Bandwidth-efficient generalized differential spatial modulation,” IEEE Trans. Veh. Technol.,vol. 72, no. 1, pp. 601-610, Jan. 2023.
[8] R. Y. Wei, S. L. Chen, Y. H. Lin, and B. C. Chen, “Corrections to“Bandwidth-efficient generalized differential spatial modulation”,” IEEE Trans. Veh. Technol., vol. 73, no. 2, p. 3005, Feb. 2023.
[9] 林楷涵, “空時區塊編碼之相差空間調變的進階結果” 國立中央大學通訊工程研究所,碩士論文, 六月. 2023.
[10] B. L. Hughes, “Differential space-time modulation,” IEEE Trans. Inform.Theory, vol. 46, pp. 2567-2578, Nov. 2000.
[11] B. M. Hochwald and W. Swelden, “Differential unitary space-time modulation,” IEEE Trans. Commun., vol. 48, pp. 2041-2052, Dec. 2000.
[12] R. Y. Wei, “Differential encoding by a look-up table for quadratureamplitude modulation,” IEEE Trans. Commun., vol. 59, no. 1, pp. 84-94,Jan. 2011.
[13] R. Y. Wei and L. T. Chen, “Further results on differential encoding by a table,” IEEE Trans. Commun., vol. 60, no. 9, pp. 2580-2590, Sep. 2012.
[14] L. Xiao, P. Yang, X. Lei, Y. Xiao, S. Fan, S. Li, and W. Xiang “A lowcomplexity detection scheme for differential spatial modulation,” IEEE Commun. Lett., vol. 19, no. 9, pp. 1516-1519, Sept. 2015.
[15] M. Wen, X. Cheng, Y. Bian, and H. V. Poor, “A low-complexity nearML differential spatial modulation detector,” IEEE Signal Proc. Lett.,vol. 22, no. 11, pp. 1834-1838, Nov. 2015
[16] Z Li, X. Cheng, S. Han, M. Wen, L. Yang, and B. Jiao, “A lowcomplexity optimal sphere decoder for differential spatial modulation,”2015 IEEE Global Communications Conference, San Diego, 2015.
[17] R. Y. Wei and T. Y. Lin, “Low-complexity differential spatial modulation,” IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 356-359, Apr.2019.
[18] R. Y. Wei, “Low-complexity differential spatial modulation schemes for a lot of antennas,” IEEE Access, vol. 8, pp. 63725-63734, Apr. 2020.
指導教授 魏瑞益(Ruey-Yi Wei) 審核日期 2024-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明