參考文獻 |
[1] A. Haydari and Y. Yılmaz, "Deep Reinforcement Learning for Intelligent Transportation Systems: A Survey", IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 1, pp. 11-32, Jan. 2022.
[2] H. Kathiriya, A. Pandya, V. Dubay and A. Bavarva, "State of Art: Energy Efficient Protocols for Self-Powered Wireless Sensor Network in IIoT to Support Industry 4.0", 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, pp. 1311-1314, 2020.
[3] L. Sun, X. Jiang, H. Ren and Y. Guo, "Edge-Cloud Computing and Artificial Intelligence in Internet of Medical Things: Architecture, Technology and Application", IEEE Access, vol. 8, pp. 101079-101092, 2020.
[4] C. E. M. Gomes, V. F. Lucena, F. Yazdi and P. Göhner, "Extending an intelligent medicine cabinet through the use of consumer electronic devices in order to increase the medication adherence", 2015 IEEE 5th International Conference on Consumer Electronics - Berlin (ICCE-Berlin), Berlin, Germany, pp. 98-102, 2015.
[5] R. Garg, I. Bhatt, K. Eashwer and S. K. Jindal, "Experimental Design and Implementation of RFID based Clinical Medicine Dispenser", 2022 1st International Conference on the Paradigm Shifts in Communication, Embedded Systems, Machine Learning and Signal Processing (PCEMS), Nagpur, India, pp. 33-36, 2022.
[6] P. J. Sun, "Privacy Protection and Data Security in Cloud Computing: A Survey, Challenges, and Solutions", IEEE Access, vol. 7, pp. 147420-147452, 2019.
[7] W. Yu et al., "A Survey on the Edge Computing for the Internet of Things", IEEE Access, vol. 6, pp. 6900-6919, 2018.
[8] J. Pan and J. McElhannon, "Future Edge Cloud and Edge Computing for Internet of Things Applications", IEEE Internet of Things Journal, vol. 5, no. 1, pp. 439-449, Feb. 2018.
[9] M. Abrar, U. Ajmal, Z. M. Almohaimeed, X. Gui, R. Akram and R. Masroor, "Energy Efficient UAV-Enabled Mobile Edge Computing for IoT Devices: A Review", IEEE Access, vol. 9, pp. 127779-127798, 2021.
[10] N. Valov and I. Valova, "Raspberry Pi as a Tool to Combine Different Courses Part of University Education", 2019 18th International Conference on Information Technology Based Higher Education and Training (ITHET), pp. 1-5, Magdeburg, Germany, 2019.
[11] 網路資料on line resources:HACKATRONIC:Raspberry Pi 5 Pinout, specifications, Pricing A Complete Guide。取自https://www.hackatronic.com/raspberry-pi-5-pinout-specifications-pricing-a-complete-guide/
[12] 網路資料on line resources:Raspberry Pi:Camera。取自https://www.raspberrypi.com/documentation/accessories/camera.html
[13] Z. -Q. Zhao, P. Zheng, S. -T. Xu and X. Wu, "Object Detection With Deep Learning: A Review", IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 11, pp. 3212-3232, Nov. 2019.
[14] Ki-Yeong Park, Sun-Young Hwang, "An improved Haar-like feature for efficient object detection", Pattern Recognition Letters, vol. 42, pp. 148-153, 2014.
[15] 網路資料on line resources:Cinnamon AI Taiwan:深度學習:CNN原理。取自https://cinnamonaitaiwan.medium.com/%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92-cnn%E5%8E%9F%E7%90%86-keras%E5%AF%A6%E7%8F%BE-432fd9ea4935
[16] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection", 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 779-788, 2016.
[17] L. Jiao et al., "A Survey of Deep Learning-Based Object Detection", IEEE Access, vol. 7, pp. 128837-128868, 2019.
[18] R. Bao and Z. Yang, "CNN-Based Regional People Counting Algorithm Exploiting Multi-Scale Range-Time Maps With an IR-UWB Radar", IEEE Sensors Journal, vol. 21, no. 12, pp. 13704-13713, 15 June15, 2021.
[19] L. Yan, Z. Chen, X. Wu, X. Yuan, J. Zhu and J. Li, "Object Detection Method Based On Improved SSD Algorithm For Smart Grid", 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2), Taiyuan, China, pp. 3020-3024, 2021.
[20] A. Bochkovskiy, C. Y. Wang and H. Y. Liao, "YOLOv4: Optimal Speed and Accuracy of Object Detection", ArXiv, https://doi.org/10.48550/arXiv.2004.10934, 2020.
[21] 網路資料on line resources:ultralytics:YOLOv5。取自https://github.com/ultralytics/yolov5
[22] F. Schroff, D. Kalenichenko and J. Philbin, "FaceNet: A unified embedding for face recognition and clustering", 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, pp. 815-823, 2015.
[23] I. William, D. R. Ignatius Moses Setiadi, E. H. Rachmawanto, H. A. Santoso and C. A. Sari, "Face Recognition using FaceNet (Survey, Performance Test, and Comparison)", 2019 Fourth International Conference on Informatics and Computing (ICIC), Semarang, Indonesia, pp. 1-6 , 2019.
[24] A. Singh and R. Kumar, "Heart Disease Prediction Using Machine Learning Algorithms", 2020 International Conference on Electrical and Electronics Engineering (ICE3), Gorakhpur, India, pp. 452-457, 2020.
[25] T. R. N and R. Gupta, "A Survey on Machine Learning Approaches and Its Techniques:", 2020 IEEE International Students′ Conference on Electrical,Electronics and Computer Science (SCEECS), Bhopal, India, pp. 1-6, 2020.
[26] A. Mikołajczyk and M. Grochowski, "Data augmentation for improving deep learning in image classification problem", 2018 International Interdisciplinary PhD Workshop (IIPhDW), Świnouście, Poland, pp. 117-122, 2018.
[27] C. Khosla and B. S. Saini, "Enhancing Performance of Deep Learning Models with different Data Augmentation Techniques: A Survey", 2020 International Conference on Intelligent Engineering and Management (ICIEM), London, UK, pp. 79-85, 2020.
[28] M. Masana, X. Liu, B. Twardowski, M. Menta, A. D. Bagdanov and J. van de Weijer, "Class-Incremental Learning: Survey and Performance Evaluation on Image Classification", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 5, pp. 5513-5533, 1 May 2023.
[29] Q. Yang, Y. Gu and D. Wu, "Survey of incremental learning", 2019 Chinese Control And Decision Conference (CCDC), Nanchang, China, pp. 399-404, 2019.
[30] 網路資料on line resources:LINE。取自https://zh.wikipedia.org/zh-tw/LINE
[31] 網路資料on line resources:LINE Engineering:開發LINE聊天機器人不可不知的十件事。取自
https://engineering.linecorp.com/zh-hant/blog/line-device-10/
[32] 網路資料on line resources:AWS IAM。取自https://docs.aws.amazon.com/zh_tw/IAM/latest/UserGuide/introduction.html
[33] 網路資料on line resources:Amazon S3。取自https://docs.aws.amazon.com/zh_tw/AmazonS3/latest/userguide/Welcome.html
[34] S. Yang, P. Luo, C. C. Loy and X. Tang, "WIDER FACE: A Face Detection Benchmark", 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 5525-5533, 2016.
[35] G. B. Huang, M. Mattar, T. L. Berg and E. Learned-Miller, "Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments", University of Massachusetts: Amherst, Technical Report 07-49, 2007.
[36] Kıvrak, O., & Gürbüz, M. Z., "Performance Comparison of YOLOv3,YOLOv4 and YOLOv5 algorithms : A Case Study for Poultry Recognition", Avrupa Bilim Ve Teknoloji Dergisi(38), pp. 392-397, 2022.
[37] Zhang, Z.; Huang, J.; Hei, G.; Wang, W., "YOLO-IR-Free: An Improved Algorithm for Real-Time Detection of Vehicles in Infrared Images", Sensors 2023, 23, 8723. https://doi.org/10.3390/s23218723
[38] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications", arXiv, arXiv:1704.04861v1, 2017.
[39] A. Arias-Duart, E. Mariotti, D. Garcia-Gasulla and J. M. Alonso-Moral, "A Confusion Matrix for Evaluating Feature Attribution Methods", 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Vancouver, BC, Canada, pp. 3709-3714, 2023.
[40] K. Zhang, Z. Zhang, Z. Li and Y. Qiao, "Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks", IEEE Signal Processing Letters, vol. 23, no. 10, pp. 1499-1503, Oct. 2016. |