博碩士論文 109553018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:104 、訪客IP:3.136.236.126
姓名 黃啓翔(Chi-Hsiang Huang)  查詢紙本館藏   畢業系所 通訊工程學系在職專班
論文名稱 使用 LSTM、GRU 和 SRU 演算法優化家用儲能系統充放電決策
(Optimizing the charging strategy of home energy storage systems using LSTM, GRU and SRU algorithms)
相關論文
★ 非結構同儕網路上以特徵相似度為基準之搜尋方法★ 以階層式叢集聲譽為基礎之行動同儕網路拓撲架構
★ 線上RSS新聞資料流中主題性事件監測機制之設計與實作★ 耐延遲網路下具密度感知的路由方法
★ 整合P2P與UPnP內容分享服務之家用多媒體閘道器:設計與實作★ 家庭網路下簡易無縫式串流影音播放服務之設計與實作
★ 耐延遲網路下訊息傳遞時間分析與高效能路由演算法設計★ BitTorrent P2P 檔案系統下載端網路資源之可調式配置方法與效能實測
★ 耐延遲網路中利用訊息編碼重組條件之資料傳播機制★ 耐延遲網路中基於人類移動模式之路由機制
★ 車載網路中以資料匯集技術改善傳輸效能之封包傳送機制★ 適用於交叉路口環境之車輛叢集方法
★ 車載網路下結合路側單元輔助之訊息廣播機制★ 耐延遲網路下以靜態中繼節點(暫存盒)最佳化訊息傳遞效能之研究
★ 耐延遲網路下以動態叢集感知建構之訊息傳遞機制★ 跨裝置影音匯流平台之設計與實作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,全球能源結構中綠能發電的比例不斷增加,但同時也帶來了能源供應的不穩定性和不可預測性的挑戰。為了解決這些問題,儲能系統成為了重要的解決方案。儲能系統可以暫時將綠能發電過剩的能量儲存起來,在發電量不足或電費較高的時候應急使用,妥善利用儲能系統可以平衡能源供需,維持電網穩定。這樣的措施有助於提高能源利用效率,實現更可持續的綠能發展。而在儲能系統上使用機器學習演算法,觀察和學習家戶用電的習慣,利用時間電價表改變充放電的時機,可進一步節省家戶用電費用的支出。
本論文旨在比較Long Short-Term Memory (LSTM)、Gated Recurrent Unit (GRU)和Simple Recurrent Unit (SRU)這三種循環神經網絡Recurrent Neural Network (RNN)演算法應用在家用儲能系統用電量和發電量的預測準確性和訓練效能。實驗數據顯示,這三種演算法在訓練集和測試集的預測準確率不相上下,而在訓練時間上SRU可較 LSTM 快43%。訓練速度的提升,使SRU更適合處理複雜的應用計算。在採用演算法輔助充放電決策後,並考量了充放電損耗後,家用儲能系統可利用時間電價的優惠,再節省4.5%的電費支出。
摘要(英) In recent years, the proportion of green energy power generation in the global energy structure has been increasing, but it has also brought challenges of instability and unpredictability of energy supply. In order to solve these problems, energy storage systems have become an important solution. Energy storage systems can temporarily store excess energy generated by green energy for emergency use when power generation is insufficient or electricity bills are high. Proper use of energy storage systems can balance energy supply and demand and maintain grid stability. Such measures can help improve energy efficiency and achieve more sustainable green energy development. Using machine learning algorithms on energy storage systems to observe and learn household electricity consumption habits, and using time electricity price tables to change the timing of charging and discharging, can further save household electricity costs.
This paper aims to compare the electricity consumption of three types of Recurrent Neural Network (RNN) algorithms: Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU) and Simple Recurrent Unit (SRU) when applied to home energy storage systems. and power generation prediction accuracy and training efficiency. Experimental data shows that the prediction accuracy of these three algorithms in the training set and test set is similar, and SRU can be 43% faster than LSTM in training time. The improvement in training speed makes SRU more suitable for processing complex application calculations. When dealing with abnormal data, LSTM performs better in data prediction due to its more complete gating mechanism. After using algorithms to assist charging and discharging decisions, home energy storage systems can save another 4.5% in electricity bills.
關鍵字(中) ★ 家用儲能系統
★ 時變電價
★ 發電量預測
★ 用電量預測
★ 電池充放電決策
關鍵字(英) ★ Home Energy Storage System
★ Time-Varying Electricity Price
★ Power Generation Forecast
★ Power Consumption Forecast
★ Battery Charging and Discharging Strategy
論文目次 中文摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第1章 緒論 1
1-1 研究背景 1
1-2 研究動機 2
1-3 問題描述 3
1-4 研究內容 4
第2章 相關背景研究 6
2-1  LSTM 長短期記憶單元 7
2-2  GRU 門控循環單元 9
2-3  SRU 簡單循環單元 12
2-4  時變電價 14
2-5  綠能比率增加對發電量的影響 22
第3章 實驗平台設計 26
3-1  儲能系統容量規畫 26
3-2  供電來源 26
3-3  用電設備 28
3-4  電池損耗與電能轉換率 29
3-5  電費計算方式 29
第4章 實作與實驗結果 31
4-1  預測準確性比較 32
4-2  數據訓練效能比較 34
4-3  基於時間電價節省電費的效益 35
4-4  數據異常偏離時演算法的修正機制比較 38
第5章 結論與未來研究方向 45
5-1  結論 45
5-2  未來方向 46
參考文獻 47
附錄一 LSTM.PY 程式碼 51
附錄二 GRU.PY 程式碼 52
附錄三 SRU.PY 程式碼 54
參考文獻 [1] F. Cheng, S. Willard, J. Hawkins, B. Arellano, O. Lavrova and A. Mammoli, "Applying battery energy storage to enhance the benefits of photovoltaics," in Proceedings of IEEE Energytech, Cleveland, OH, USA, 2012, pp. 1-5, doi: 10.1109/EnergyTech.2012.6304684.
[2] B. Bian et al., "Model and Method of Capacity Planning of Energy Storage Capacity for Integrated Energy Station," presented at the 2022 4th Asia Energy and Electrical Engineering Symposium (AEEES), Chengdu, China, 2022, pp. 410-415, doi: 10.1109/AEEES54426. 2022.9759785.
[3] H. Shareef, M. S. Ahmed, A. Mohamed and E. Al Hassan, "Review on Home Energy Management System Considering Demand Responses, Smart Technologies, and Intelligent Controllers," IEEE Access, vol. 6, pp. 24498-24509, 2018, doi: 10.1109/ACCESS.2018.2831917.
[4] Z. Zhao, W. C. Lee, Y. Shin and K. -B. Song, "An Optimal Power Scheduling Method for Demand Response in Home Energy Management System," IEEE Transactions on Smart Grid, vol. 4, no. 3, pp. 1391-1400, Sept. 2013, doi: 10.1109/TSG.2013.2251018.
[5] B. Zhou, R. Yang, C. Li, Y. Cao, Q. Wang and J. Liu, "Multiobjective Model of Time-of-Use and Stepwise Power Tariff for Residential Consumers in Regulated Power Markets," IEEE Systems Journal, vol. 12, no. 3, pp. 2676-2687, Sept. 2018, doi: 10.1109/JSYST.2017.2718046.
[6] A. Dunbar, F. Tagliaferri, I. M. Viola and G. P. Harrison, "The impact of electricity price forecast accuracy on the optimality of storage revenue," in 3rd Renewable Power Generation Conference (RPG 2014), 2014, pp. 1-6, doi: 10.1049/cp.2014.0902.
[7] Y. Ding, M. Xie, Q. Wu, & J. Østergaard, "Development of energy and reserve pre-dispatch and re-dispatch models for real-time price risk and reliability assessment", IET Generation Transmission and Distribution. 8. 10.1049/iet-gtd.2013.0822.
[8] C. Vivekananthan, Y. Mishra and F. Li, "Real-time price based home energy management scheduler," 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 2015, pp. 1-1, doi: 10.1109/PESGM.2015.7286061.
[9] A. Mishra, D. Irwin, P. Shenoy, J. Kurose and Ting Zhu, "SmartCharge: Cutting the electricity bill in smart homes with energy storage," 2012 Third International Conference on Future Systems: Where Energy, Computing and Communication Meet (e-Energy), Madrid, 2012, pp. 1-10, doi: 10.1145/2208828.2208857.
[10] S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," Neural Computation, vol. 9, no. 8, pp. 1735-1780, 15 Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.
[11] F. A. Gers, J. Schmidhuber, and F. Cummins, "Learning to forget: Continual prediction with LSTM," in Proc. 9th Int. Conf. Artif. Neural Netw. (ICANN), 1999, pp. 850–855.
[12] S. Siami-Namini, N. Tavakoli and A. S. Namin, "The Performance of LSTM and BiLSTM in Forecasting Time Series," 2019 IEEE International Conference on Big Data , Los Angeles, CA, USA, 2019, pp. 3285-3292, doi: 10.1109/BigData47090.2019.9005997.
[13] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, "Empirical evaluation of gated recurrent neural networks on sequence modeling," ArXiv abs/1412.3555 (2014).
[14] Jozefowicz, Rafal, Wojciech Zaremba, and Ilya Sutskever. "An empirical exploration of recurrent network architectures." in International Conference on Machine Learning, 2015, pp. 2342-2350.
[15] Lei, T., Zhang, Y., Wang, S. I., Dai, H., & Artzi, Y. (2017). Simple recurrent units for highly parallelizable recurrence. arXiv170902755L 2017/09.
[16] J. Pan, T. Lei, K. Kim, K. J. Han and S. Watanabe, "SRU++: Pioneering Fast Recurrence with Attention for Speech Recognition," 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, Singapore, 2022, pp. 7872-7876, doi: 10.1109/ICASSP43922.2022.9746187.
[17] "Understanding GRU Networks," Towards Data Science, [Online]. Available: https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be. [Accessed: 10-Jun-2024].
[18] "LSTM及GRU網絡結構詳解與Pytorch實現," 博客園, [Online]. Available: https://www.cnblogs.com/bamtercelboo/p/8933350.html. [Accessed: 10-Jun-2024].
[19] J. Yang, T. Li, G. Liang, W. He and Y. Zhao, "A Simple Recurrent Unit Model Based Intrusion Detection System With DCGAN," IEEE Access, vol. 7, pp. 83286-83296, 2019, doi: 10.1109/ACCESS.2019.2922692.
[20] "All Electricity is Not Priced Equally: Time-Variant Pricing 101," Energy Exchange, 27-Jan-2015. [Online]. Available: https://blogs.edf.org/energyexchange/2015/01/27/all-electricity-is-not-priced-equally-time-variant-pricing-101/. [Accessed: 10-Jun-2024].
[21] "Time-of-Use Means It′s Time for Storage," Renewable Energy World, [Online]. Available: https://www.renewableenergyworld.com/storage/timeofuse-means-its-time-for-storage/. [Accessed: 10-Jun-2024].
[22] "How Ontario′s COVID-19 Recovery Rate Impacted Electricity Usage," BizX Magazine, [Online]. Available: https://bizxmagazine.com/ontario-covid-19-recovery-rate-electricity/. [Accessed: 10-Jun-2024].
[23] Burns, Kelly & Mountain, Bruce, 2021. "Do households respond to Time-Of-Use tariffs? Evidence from Australia," Energy Economics, Elsevier, vol. 95(C).
[24] "能源轉型白皮書," 經濟部能源署, [Online]. Available: https://www.moeaea.gov.tw/ECW/populace/content/Content.aspx?menu_id=13178&sub_menu_id=13180. [Accessed: 10-Jun-2024].
[25] "Duck curve," Wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Duck_curve. [Accessed: 10-Jun-2024].
[26] Renoald Albert, J., Shunmugham Vanaja, D. "Solar Energy Assessment in Various Regions of Indian Sub-continent," IntechOpen, doi: 10.5772/intechopen.95118 (2021)
[27] "立法院三讀通過再生能源發展條例修正案," 經濟部, [Online]. Available: https://www.moea.gov.tw/MNS/populace/news/News.aspx?kind=1&menu_id=40&news_id=100218. [Accessed: 10-Jun-2024].
[28] I. Javeed,, R. Khezri, A. Mahmoudi, A. Yazdani, G.M. Shafiullah, "Optimal Sizing of Rooftop PV and Battery Storage for Grid-Connected Houses Considering Flat and Time-of-Use Electricity Rates," Energies 2021, 14, 3520. https://doi.org/10.3390/en14123520
指導教授 胡誌麟(Chih-Lin Hu) 審核日期 2024-6-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明