博碩士論文 111523072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:18.116.28.245
姓名 許雅淇(Ya-Chi Hsu)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱
(Meta-Learning with Attention for Resource Allocation in Hierarchical RAN Intelligent Controller)
相關論文
★ 基於馬賽克特性之低失真實體電路佈局保密技術★ 多路徑傳輸控制協定下從無線區域網路到行動網路之無縫換手
★ 感知網路下具預算限制之異質性子頻段分配★ 下行服務品質排程在多天線傳輸環境下的效能評估
★ 多路徑傳輸控制協定下之整合型壅塞及路徑控制★ Opportunistic Scheduling for Multicast over Wireless Networks
★ 適用多用戶多輸出輸入系統之低複雜度比例公平性排程設計★ 利用混合式天線分配之 LTE 異質網路 UE 與 MIMO 模式選擇
★ 基於有限預算標價式拍賣之異質性頻譜分配方法★ 適用於 MTC 裝置 ID 共享情境之排程式分群方法
★ Efficient Two-Way Vertical Handover with Multipath TCP★ 多路徑傳輸控制協定下可亂序傳輸之壅塞及排程控制
★ 移動網路下適用於閘道重置之群體換手機制★ 使用率能小型基地台之拍賣是行動數據分流方法
★ 高速鐵路環境下之通道預測暨比例公平性排程設計★ 用於行動網路效能評估之混合式物聯網流量產生器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-23以後開放)
摘要(中) AI 在 6G 系統和元宇宙的邊緣計算中至關重要,透過在本地設備、邊緣伺服器和雲端之間實現即時適應和高效任務分配來最佳化資源管理並提升用戶體驗。它確保了無縫連接,降低了延遲,並提高了整體系統性能和擴展性。O-RAN 架構通過開放接口和 AI/ML 驅動的自動化來增強行動網路的靈活性和效率,用於資源管理和切換預測等任務,確保了擴展性和性能。挑戰包括選擇最佳的 AI/ML 模型和部署位置,這對於維持低延遲和有效的資源分配至關重要。在 5G-MEC 中,有效的資源分配著重於最小化延遲和最大化數據傳輸速率,以確保高 QoS,從而改善用戶體驗和系統性能。先進技術如深度強化學習(DRL)被提出來處理 6G 支援的移動邊緣計算(MEC)和元宇宙應用中的動態和資源密集型需求,最佳化資源分配並減少能耗和計算延遲。我們將 meta-learning 整合到 DRL 算法中,以更好地分配 5G MEC 系統中的資源,增強其適應性和有效性。通過為 O-RAN 添加 attention 機制和層次結構,我們顯著改進了反饋、靈活性和資源管理,確保了多樣化應用的卓越 QoS。與 meta-learning 方法相比,meta-attention 方法持續展示出優越的性能,平均滿意度提高了 22%。
摘要(英) AI is vital in edge computing for 6G systems and the metaverse, optimizing resource management and enhancing user experiences by enabling real-time adaptation and efficient task distribution across local devices, edge servers, and the cloud. It ensures seamless connectivity, reduces latency, and improves overall system performance and scalability.The O-RAN architecture enhances mobile network flexibility and efficiency through open interfaces and AI/ML-driven automation for tasks like resource management and handover prediction, ensuring scalability and performance. Challenges include selecting optimal AI/ML models and deployment locations, crucial for maintaining low latency and effective resource allocation.Effective resource allocation in 5G-MEC focuses on minimizing latency and maximizing data rates to ensure high QoS, thereby improving user experience and system performance. Advanced techniques like deep reinforcement learning (DRL) are proposed to handle the dynamic and resource-intensive demands of 6G-enabled mobile edge computing (MEC) and Metaverse applications, optimizing resource allocation and reducing energy use and computation delays.We integrated Meta-Learning into DRL algorithms for better resource allocation in 5G MEC systems, enhancing adaptability and effectiveness. By adding an attention mechanism and a hierarchical structure for O-RAN, we significantly improved feedback, flexibility, and resource management, ensuring superior QoS for diverse applications.The Meta-Attention method consistently demonstrates superior performance, with an average satisfaction increase of 22\% compared to Meta-Learning approaches.
關鍵字(中) ★ 排程
★ 深度強化學習
★ 開放性無線接入網路
★ 元學習
★ 注意力機制
★ 移動邊緣計算
關鍵字(英) ★ scheduling
★ Deep reinforcement learning
★ O-RAN
★ meta-learing
★ attention
★ Mobile Edge Computing
論文目次 Table of Contents
1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Related Works 5
2.1 Intellenget Resource Allocation . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 O-RAN AI/ML Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Meta-Learning for DRL . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 System and User Interaction Models 9
3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Adaptive Resource Allocation with DRL in 5G MEC Networks . . . . . . 11
3.4 DRL for Resource Allocation . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Meta-Attention Methods 14
4.1 Meta-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Attention Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Meta-Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Modular Machine Learning in Hierarchical Structure . . . . . . . . . . . . 18
5 Experiment Results 20
5.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6 Conclusions 28
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Bibliography 30
參考文獻 [1] Thien Huynh-The, Quoc-Viet Pham, Xuan-Qui Pham, Thanh Thi Nguyen, Zhu Han,
and Dong-Seong Kim. Artificial intelligence for the metaverse: A survey. Engineer-
ing Applications of Artificial Intelligence, 117:105581, 2023.
[2] Wei Yang Bryan Lim, Zehui Xiong, Dusit Niyato, Xianbin Cao, Chunyan Miao,
Sumei Sun, and Qiang Yang. Realizing the metaverse with edge intelligence: A
match made in heaven. IEEE Wireless Communications, 30(4):64–71, 2023.
[3] Muhammad Zawish, Fayaz Ali Dharejo, Sunder Ali Khowaja, Saleem Raza, Steven
Davy, Kapal Dev, and Paolo Bellavista. Ai and 6g into the metaverse: Fundamentals,
challenges and future research trends. IEEE Open Journal of the Communications
Society, 5:730–778, 2024.
[4] Paulo Ricardo B. da Silva, Jo ̃ao Paulo S. H. Lima, Vitalii Afanasiev, Luiz Henrique
M. Silva Eduardo Mel ̃ao, and Michelle S. P. Facina. Demonstration of open radio
access network intelligent controllers. In 2023 Wireless Telecommunications Sym-
posium (WTS), pages 1–7, 2023.
[5] Nischal Aryal, Emmanuel Bertin, and Noel Crespi. Open radio access network chal-
lenges for next generation mobile network. In 2023 26th Conference on Innovation
in Clouds, Internet and Networks and Workshops (ICIN), pages 90–94, 2023.
[6] Mutasem Q. Hamdan, Haeyoung Lee, Dionysia Triantafyllopoulou, R ́uben Bor-
ralho, Abdulkadir Kose, Esmaeil Amiri, David Mulvey, Wenjuan Yu, Rafik Zitouni,
Riccardo Pozza, Bernie Hunt, Hamidreza Bagheri, Chuan Heng Foh, Fabien He-
liot, Gaojie Chen, Pei Xiao, Ning Wang, and Rahim Tafazolli. Recent advances in
machine learning for network automation in the o-ran. Sensors, 23(21), 2023.
[7] Xiangyu Gao, Yaping Sun, Hao Chen, Xiaodong Xu, and Shuguang Cui. Joint Com-
puting, Pushing, and Caching Optimization for Mobile-Edge Computing Networks
30
via Soft Actor–Critic Learning. IEEE Internet of Things Journal, 11(6):9269–9281,
2024.
[8] Tianbing Xu, Qiang Liu, Liang Zhao, and Jian Peng. Learning to explore via meta-
policy gradient. In Jennifer Dy and Andreas Krause, editors, Proceedings of the
35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 5463–5472. PMLR, 10–15 Jul 2018.
[9] Yen-Chen Lin, Ya-Chi Hsu, Yu-Jui Chen, Yu-Chun Chang, Jing-Yun Fang, and
Chih-Wei Huang. Meta-learning traffic pattern adaptation for drl-based radio re-
source management. In 2024 IEEE International Conference on Communications
(ICC), Denver, CO, USA, 2024. IEEE.
[10] Jiateng Huang, Wanrong Huang, Long Lan, and Dan Wu. Meta attention for off-
policy actor-critic. Neural Networks, 163:86–96, 2023.
[11] Shichao Xia, Zhixiu Yao, Yun Li, and Shiwen Mao. Online distributed offload-
ing and computing resource management with energy harvesting for heterogeneous
mec-enabled iot. IEEE Transactions on Wireless Communications, 20(10):6743–
6757, 2021.
[12] Jie Huang, Fan Yang, Chinmay Chakraborty, Zhiwei Guo, Huiyan Zhang, Li Zhen,
and Keping Yu. Opportunistic capacity based resource allocation for 6g wireless
systems with network slicing. Future Generation Computer Systems, 140:390–401,
2023.
[13] Xingxia Dai, Zhu Xiao, Hongbo Jiang, and John C. S. Lui. Uav-assisted task of-
floading in vehicular edge computing networks. IEEE Transactions on Mobile Com-
puting, 23(4):2520–2534, 2024.
[14] Huan Zhou, Kai Jiang, Xuxun Liu, Xiuhua Li, and Victor C. M. Leung. Deep
reinforcement learning for energy-efficient computation offloading in mobile-edge
computing. IEEE Internet of Things Journal, 9(2):1517–1530, 2022.
[15] Linbo Liao, Yongxuan Lai, Fan Yang, and Wenhua Zeng. Online computation of-
floading with double reinforcement learning algorithm in mobile edge computing.
Journal of Parallel and Distributed Computing, 171:28–39, 2023.
31
[16] Po-Chen Chen, Yen-Chen Chen, Wei-Hsiang Huang, Chih-Wei Huang, and Olav
Tirkkonen. Ddpg-based radio resource management for user interactive mobile edge
networks. In 2020 2nd 6G Wireless Summit (6G SUMMIT), pages 1–5, 2020.
[17] DeepWiN: Deep Graph Reinforcement Learning for User-Centric Radio Access
Networks Automation — shareok.org. https://shareok.org/handle/11244/
340066, 2023. [Accessed 12-06-2024].
[18] Fatemeh Kavehmadavani, Van-Dinh Nguyen, Thang X. Vu, and Symeon Chatzino-
tas. Intelligent traffic steering in beyond 5g open ran based on lstm traffic prediction.
IEEE Transactions on Wireless Communications, 22(11):7727–7742, 2023.
[19] Barak Gahtan, Reuven Cohen, Alex M. Bronstein, and Gil Kedar. Using deep re-
inforcement learning for mmwave real-time scheduling. In 2023 14th International
Conference on Network of the Future (NoF), pages 71–79, 2023.
[20] Asheesh Tripathi, Jaswanth S R Mallu, Md. Habibur Rahman, Abida Sultana, Aditya
Sathish, Alexandre Huff, Mayukh Roy Chowdhury, and Aloizio Pereira Da Silva.
End-to-end o-ran control-loop for radio resource allocation in sdr-based 5g network.
In MILCOM 2023 - 2023 IEEE Military Communications Conference (MILCOM),
pages 253–254, 2023.
[21] Hoejoo Lee, Youngcheol Jang, Juhwan Song, and Hunje Yeon. O-ran ai/ml workflow
implementation of personalized network optimization via reinforcement learning. In
2021 IEEE Globecom Workshops (GC Wkshps), pages 1–6, 2021.
[22] Suvidha Mhatre, Ferran Adelantado, Kostas Ramantas, and Christos Verikoukis.
Aiaas for oran-based 6g networks: Multi-time scale slice resource management with
drl, 2024.
[23] Lukasz Kulacz. Hierarchical Traffic Management in O-RAN - A Ve-
hicular Scenario — rimedolabs.com. https://rimedolabs.com/blog/
hierarchical-traffic-management-in-oran-a-vehicular-scenario/,
2024. [Accessed 12-06-2024].
[24] Zizhen Zhang, Zhiyuan Wu, Hang Zhang, and Jiahai Wang. Meta-learning-based
deep reinforcement learning for multiobjective optimization problems. IEEE Trans-
actions on Neural Networks and Learning Systems, 34(10):7978–7991, 2023.
32
[25] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combi-
natorial optimization: A methodological tour d’horizon. European Journal of Oper-
ational Research, 290(2):405–421, 2021.
[26] Natalia Vesselinova, Rebecca Steinert, Daniel F. Perez-Ramirez, and Magnus Bo-
man. Learning combinatorial optimization on graphs: A survey with applications to
networking. IEEE Access, 8:120388–120416, 2020.
[27] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for
fast adaptation of deep networks. CoRR, abs/1703.03400, 2017.
[28] Yi Yuan, Gan Zheng, Kai-Kit Wong, and Khaled B. Letaief. Meta-reinforcement
learning based resource allocation for dynamic v2x communications. IEEE Trans-
actions on Vehicular Technology, 70(9):8964–8977, 2021.
[29] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. Re-
source management with deep reinforcement learning. In Proceedings of the 15th
ACM Workshop on Hot Topics in Networks, HotNets ’16, pages 50–56, New York,
NY, USA, 2016. Association for Computing Machinery.
[30] 3GPP TS 23.501. System Architecture for the 5G System.
[31] Luciano Dias Ferreira, Luiz Fernando Bittencourt, Edmundo Roberto Moreira
Madeira, Jose Marcos Silva Rodrigues, and Albert Y Zomaya. A comprehensive
survey of machine learning techniques in software-defined networking. Journal of
Ambient Intelligence and Humanized Computing, 10(7):2769–2781, 2018.
指導教授 黃志煒(Chih-Wei Huang) 審核日期 2024-8-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明