博碩士論文 111523041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.145.82.50
姓名 孫全賢(CHUAN-HSIEN SUN)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 移動群眾感知平台上適用於反向拍賣模型的DQN參與者選擇方法
(DQN-based Participant Selection for Reverse Auction in Mobile Crowdsensing Platform)
相關論文
★ 非結構同儕網路上以特徵相似度為基準之搜尋方法★ 以階層式叢集聲譽為基礎之行動同儕網路拓撲架構
★ 線上RSS新聞資料流中主題性事件監測機制之設計與實作★ 耐延遲網路下具密度感知的路由方法
★ 整合P2P與UPnP內容分享服務之家用多媒體閘道器:設計與實作★ 家庭網路下簡易無縫式串流影音播放服務之設計與實作
★ 耐延遲網路下訊息傳遞時間分析與高效能路由演算法設計★ BitTorrent P2P 檔案系統下載端網路資源之可調式配置方法與效能實測
★ 耐延遲網路中利用訊息編碼重組條件之資料傳播機制★ 耐延遲網路中基於人類移動模式之路由機制
★ 車載網路中以資料匯集技術改善傳輸效能之封包傳送機制★ 適用於交叉路口環境之車輛叢集方法
★ 車載網路下結合路側單元輔助之訊息廣播機制★ 耐延遲網路下以靜態中繼節點(暫存盒)最佳化訊息傳遞效能之研究
★ 耐延遲網路下以動態叢集感知建構之訊息傳遞機制★ 跨裝置影音匯流平台之設計與實作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-19以後開放)
摘要(中) 移動群眾感知技術通過集體努力,利用來自大量移動用戶的數據,顯著提高了環境中數據利用率。在這個過程中,移動用戶參與感知任務並獲取相應的獎勵。然而,參與者的感測設備和感測行為通常不專業進而導致感測品質低或甚至是提交無用的數據。在此背景下,本文提出了一種移動群眾感知平台上適用於反向拍賣模型的參與者選擇機制,旨在穩定地招募移動參與者,提高感知數據的可靠性和質量。這一機制透過反向拍賣使平台能夠招募到最合適的參與者。平台會分析傳感數據,確定移動參與者的聲稱成本以及實際成本,以確保數據的質量和可靠性。該機制透過強化學習(DRL)根據任務需求和環境變化動態選擇最合適的參與者,從而避免收集過多冗餘數據。強化學習不斷學習,將任務分配給最適合的參與者,從而在有限預算下提高平台的利潤並維持穩定性。效能結果表明,我們的機制能夠使移動群眾感知平台在長期任務分配過程中最大化整體任務完成度的同時最大化平台的收益,也能有效防範異常參與者所帶來的影響。
摘要(英) Mobile crowdsensing (MCS) technology leverages collective efforts and data from a large number of mobile participants to significantly enhance data utilization efficiency in various environments. In this process, mobile participants complete tasks and receive corresponding rewards. However, the sensing devices and behaviors of participants are often unprofessional, leading to poor sensing quality or even submission of useless data.This article proposes a participant selection mechanism suitable for reverse auction models on MCS platforms. The aim is to stably recruit mobile participants, improve the reliability and quality of sensed data, and prevent the influence of abnormal participants. Through reverse auctions, the platform can recruit the most suitable participants. The platform analyzes the sensed data to determine the claimed and actual costs of mobile participants, ensuring data quality and reliability. The mechanism uses deep reinforcement learning (DRL) to dynamically select the most appropriate participants based on task requirements and environmental changes, thus avoiding the collection of excessive redundant data. Reinforcement learning continuously learns and allocates tasks to the most suitable participants, thereby increasing the platform′s profit and maintaining stability under limited budget. Performance results manifest that our mechanism enables the MCS platform to maximize overall task completion rate and platform revenue during long-term task allocation processes, effectively mitigating the impact of abnormal participants.
關鍵字(中) ★ 移動群眾感知
★ 強化學習
★ 參與者選擇
★ 拍賣理論
★ 用戶特徵
★ 行動計算
★ 物聯網
關鍵字(英) ★ Mobile Crowdsensing
★ Reinforcement Learning
★ Participant selection
★ Auction theory
★ User characteristic
★ Mobile computing
★ Internet of Things(IoT)
論文目次 摘要i
Abstract ii
圖目錄v
表目錄vi
1 簡介1
2 背景與相關文獻探討5
2.1 MCS 移動群眾感知與問題. . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 MCS 移動群眾感知概述. . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 MCS 的參與者選擇. . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 基於拍賣理論之參與者選擇策略分析. . . . . . . . . . . . . . . . . . . . . 12
2.2.1 拍賣理論優勢. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 基於quality 的拍賣理論. . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 基於latency 的拍賣理論. . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 強化學習. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 強化學習. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 MCS 場域下之強化學習探討. . . . . . . . . . . . . . . . . . . . . 21
3 系統架構23
3.1 反向拍賣. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 拍賣模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 問題定義. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 強化學習. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 整體流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4 實驗與結果分析40
4.1 實驗環境. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 實驗設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.1 網路環境設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 模型參數設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.1 學習率(α) 影響. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.2 衰減率(γ) 影響. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.3 對照組之概念說明. . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.4 參與者選擇下預算花費和任務完成率評估比較. . . . . . . . . . . . 51
4.3.5 參與者選擇下處理延遲和服務品質評估比較. . . . . . . . . . . . . 54
4.3.6 參與者選擇下異常比例變化的任務完成率評估比較. . . . . . . . . 58
5 結論與未來研究62
參考文獻63
參考文獻 [1] A. Capponi, C. Fiandrino, B. Kantarci, L. Foschini, D. Kliazovich, and P. Bouvry, “A survey on mobile crowdsensing systems: Challenges, solutions, and opportunities,” IEEE communications surveys & tutorials, vol. 21, no. 3, pp. 2419–2465, 2019.
[2] M. Pouryazdan, B. Kantarci, T. Soyata, L. Foschini, and H. Song, “Quantifying user reputation scores, data trustworthiness, and user incentives in mobile crowd-sensing,” IEEE access, vol. 5, pp. 1382–1397, 2017.
[3] D. Wu, J. Liu, and Z. Yang, “Bilateral satisfaction aware participant selection with
mec for mobile crowd sensing,” IEEE Access, vol. 8, pp. 48 110–48 122, 2020.
[4] C. Zhang and N. Kamiyama, “Data quality maximization for mobile crowdsensing,” in NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium. IEEE, 2020, pp. 1–7.
[5] C.-L. Hu, K.-Y. Lin, and C. K. Chang, “Incentive mechanism for mobile crowdsensing with two-stage stackelberg game,” IEEE Transactions on Services Computing, 2022.
[6] G. Hu, Y. Jia, and Z. Chen, “Multi-user computation offloading with d2d for mobile edge computing,” in 2018 IEEE Global Communications Conference (GLOBECOM). IEEE, 2018, pp. 1–6.
[7] D. Peng, F. Wu, and G. Chen, “Pay as how well you do: A quality based incentive mechanism for crowdsensing,” in Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing, 2015, pp. 177–186.
[8] X. Wang, W. Tushar, C. Yuen, and X. Zhang, “Promoting users'participation in mobile crowdsourcing: A distributed truthful incentive mechanism (dtim) approach,” IEEE Transactions on Vehicular Technology, vol. 69, no. 5, pp. 5570–5582, 2020.
[9] G. Ji, Z. Yao, B. Zhang, and C. Li, “A reverse auction-based incentive mechanism for mobile crowdsensing,” IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8238–8248, 2020.
[10] Y. Wang, Z. Cai, Z.-H. Zhan, Y.-J. Gong, and X. Tong, “An optimization and auction-based incentive mechanism to maximize social welfare for mobile crowdsourcing,” IEEE Transactions on Computational Social Systems, vol. 6, no. 3, pp. 414–429, 2019.
[11] A. Kiani and N. Ansari, “Toward hierarchical mobile edge computing: An auctionbased profit maximization approach,” IEEE Internet of Things Journal, vol. 4, no. 6, pp. 2082–2091, 2017.
[12] X. Zhang, L. Jiang, and X. Wang, “Incentive mechanisms for mobile crowdsensing with heterogeneous sensing costs,” IEEE Transactions on Vehicular Technology, vol. 68, no. 4, pp. 3992–4002, 2019.
[13] Y. Jiao, P. Wang, D. Niyato, and Z. Xiong, “Social welfare maximization auction in edge computing resource allocation for mobile blockchain,” in 2018 IEEE international conference on communications (ICC). IEEE, 2018, pp. 1–6.
[14] N. C. Luong, Z. Xiong, P. Wang, and D. Niyato, “Optimal auction for edge computing resource management in mobile blockchain networks: A deep learning approach,” in 2018 IEEE international conference on communications (ICC). IEEE, 2018, pp. 1–6.
[15] Y. Liu, L. Kong, and G. Chen, “Data-oriented mobile crowdsensing: A comprehensive survey,” IEEE communications surveys & tutorials, vol. 21, no. 3, pp. 2849–2885, 2019.
[16] Z. Wang, J. Zhao, J. Hu, T. Zhu, Q. Wang, J. Ren, and C. Li, “Towards personalized task-oriented worker recruitment in mobile crowdsensing,” IEEE Transactions on Mobile Computing, vol. 20, no. 5, pp. 2080–2093, 2020.
[17] N. B. Truong, G. M. Lee, T.-W. Um, and M. Mackay, “Trust evaluation mechanism for user recruitment in mobile crowd-sensing in the internet of things,” IEEE Transactions on Information Forensics and Security, vol. 14, no. 10, pp. 2705–2719, 2019.
[18] J. Wang, F. Wang, Y. Wang, D. Zhang, L. Wang, and Z. Qiu, “Social-networkassisted worker recruitment in mobile crowd sensing,” IEEE Transactions on Mobile Computing, vol. 18, no. 7, pp. 1661–1673, 2018.
[19] B. Zhao, S. Tang, X. Liu, and X. Zhang, “Pace: Privacy-preserving and qualityaware incentive mechanism for mobile crowdsensing,” IEEE Transactions on Mobile Computing, vol. 20, no. 5, pp. 1924–1939, 2020.
[20] L. Pournajaf, D. A. Garcia-Ulloa, L. Xiong, and V. Sunderam, “Participant privacy in mobile crowd sensing task management: A survey of methods and challenges,” ACM Sigmod Record, vol. 44, no. 4, pp. 23–34, 2016.
[21] F. Restuccia, P. Ferraro, S. Silvestri, S. K. Das, and G. L. Re, “Incentme: Effective mechanism design to stimulate crowdsensing participants with uncertain mobility,” IEEE Transactions on Mobile Computing, vol. 18, no. 7, pp. 1571–1584, 2018.
[22] Z. He, J. Cao, and X. Liu, “High quality participant recruitment in vehicle-based crowdsourcing using predictable mobility,” in 2015 IEEE Conference on Computer Communications (INFOCOM). IEEE, 2015, pp. 2542–2550.
[23] F. Wu, S. Yang, Z. Zheng, S. Tang, and G. Chen, “Fine-grained user profiling for personalized task matching in mobile crowdsensing,” IEEE Transactions on Mobile Computing, vol. 20, no. 10, pp. 2961–2976, 2020.
[24] Z. Wang, J. Zhao, J. Hu, T. Zhu, Q. Wang, J. Ren, and C. Li, “Towards personalized task-oriented worker recruitment in mobile crowdsensing,” IEEE Transactions on Mobile Computing, vol. 20, no. 5, pp. 2080–2093, 2020.
[25] S. Yang, F. Wu, S. Tang, X. Gao, B. Yang, and G. Chen, “On designing data qualityaware truth estimation and surplus sharing method for mobile crowdsensing,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 4, pp. 832–847, 2017.
[26] Z. Wang, J. Hu, J. Zhao, D. Yang, H. Chen, and Q. Wang, “Pay on-demand: Dynamic incentive and task selection for location-dependent mobile crowdsensing systems,” in 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS). IEEE, 2018, pp. 611–621.
[27] T. Lyu, H. Xu, F. Liu, M. Li, L. Li, and Z. Han, “Two layer stackelberg gamebased resource allocation in cloud-network convergence service computing,” IEEE Transactions on Cognitive Communications and Networking, 2024.
[28] R. Rathi and N. Gupta, “Device to device communication using stackelberg game theory approach,” in 2020 Research, Innovation, Knowledge Management and Technology Application for Business Sustainability (INBUSH). IEEE, 2020, pp. 100–103.
[29] B. Ai, W. Wang, M. Hua, Y. Jiang, J. Jiang, and Y. Zhou, “Enhancing the quality in crowdsourcing e-markets through team formation games,” IEEE Intelligent Systems, vol. 36, no. 4, pp. 13–23, 2020.
[30] D. Zhang, L. Tan, J. Ren, M. K. Awad, S. Zhang, Y. Zhang, and P.-J. Wan, “Near-optimal and truthful online auction for computation offloading in green edgecomputing systems,” IEEE Transactions on Mobile Computing, vol. 19, no. 4, pp. 880–893, 2019.
[31] D. Wang, Y. Jia, L. Liang, M. Dong, and K. Ota, “A game for task offloading in reputation-based consortium blockchain networks,” IEEE Wireless Communications Letters, vol. 11, no. 7, pp. 1508–1512, 2022.
[32] L. He and J. Zhang, “Distributed energy sharing within community: A gametheoretic double auction approach,” in 2020 IEEE Power & Energy Society General Meeting (PESGM). IEEE, 2020, pp. 1–5.
[33] V. K. Singh, S. Mukhopadhyay, F. Xhafa, and A. Sharma, “A budget feasible peer graded mechanism for iot-based crowdsourcing,” Journal of Ambient Intelligence and Humanized Computing, vol. 11, pp. 1531–1551, 2020.
[34] F. Xhafa and A. Sangaiah, “A quality-assuring, combinatorial auction based mechanism for iot-based crowdsourcing,” Advances in Edge Computing: Massive Parallel Processing and Applications, vol. 35, p. 148, 2020.
[35] C. Avasalcai, C. Tsigkanos, and S. Dustdar, “Decentralized resource auctioning for latency-sensitive edge computing,” in 2019 IEEE international conference on edge computing (EDGE). IEEE, 2019, pp. 72–76.
[36] H. Zhou, T. Wu, X. Chen, S. He, D. Guo, and J. Wu, “Reverse auction-based computation offloading and resource allocation in mobile cloud-edge computing,” IEEE Transactions on Mobile Computing, vol. 22, no. 10, pp. 6144–6159, 2022.
[37] S. Wang, Z. Zhang, R. Yu, and Y. Zhang, “Low-latency caching with auction game in vehicular edge computing,” in 2017 IEEE/CIC International Conference on Communications in China (ICCC). IEEE, 2017, pp. 1–6.
[38] D. Fudenberg and J. Tirole, Game theory. MIT press, 1991.
[39] G. Yang, L. Hou, X. He, D. He, S. Chan, and M. Guizani, “Offloading time optimization via markov decision process in mobile-edge computing,” IEEE internet of things journal, vol. 8, no. 4, pp. 2483–2493, 2020.
[40] M. Tang and V. W. Wong, “Deep reinforcement learning for task offloading in mobile edge computing systems,” IEEE Transactions on Mobile Computing, vol. 21, no. 6, pp. 1985–1997, 2020.
[41] C. O. Yaldiz and Y. Yildiz, “Driver modeling using continuous reasoning levels: A game theoretical approach,” in 2022 IEEE 61st Conference on Decision and Control (CDC). IEEE, 2022, pp. 5068–5073.
[42] M. Abdoos, “A cooperative multiagent system for traffic signal control using game theory and reinforcement learning,” IEEE Intelligent Transportation Systems Magazine, vol. 13, no. 4, pp. 6–16, 2020.
[43] J. Liang, M. Ma, and X. Tan, “Gadqn-ids: A novel self-adaptive ids for vanets based on bayesian game theory and deep reinforcement learning,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 8, pp. 12 724–12 737, 2021.
[44] P. Teymoori and A. Boukerche, “Dynamic multi-user computation offloading for mobile edge computing using game theory and deep reinforcement learning,” in ICC 2022-IEEE International Conference on Communications. IEEE, 2022, pp. 1930–1935.
[45] L. Xue, B. Ma, J. Liu, C. Mu, and D. C. Wunsch, “Extended kalman filter based resilient formation tracking control of multiple unmanned vehicles via game-theoretical reinforcement learning,” IEEE Transactions on Intelligent Vehicles, 2023.
[46] S. B. Engidayehu, T. Mahboob, and M. Y. Chung, “Deep reinforcement learningbased task offloading and resource allocation in mec-enabled wireless networks,” in 2022 27th Asia Pacific Conference on Communications (APCC). IEEE, 2022, pp. 226–230.
[47] L. Pu, X. Chen, J. Xu, and X. Fu, “D2d fogging: An energy-efficient and incentiveaware task offloading framework via network-assisted d2d collaboration,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3887–3901, 2016.
[48] G. Wang, Y. Xu, J. He, J. Pan, F. Zuo, and X. He, “Resilient participant selection under vulnerability induced colluding attacks for crowdsourcing,” IEEE Transactions on Vehicular Technology, vol. 71, no. 7, pp. 7904–7918, 2022.
指導教授 胡誌麟(Chih-Lin Hu) 審核日期 2024-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明