參考文獻 |
[1] nuscenes leaderboard. https://eval.ai/web/challenges/challenge-page/591/leaderboard/1659.
[2] William Qi Benjamin Wilson, John Lambert Tanmay Agarwal, Siddhesh Khandelwal Jagjeet Singh, Ratnesh Kumar Bowen Pan, Jhony Kaesemodel Pontes Andrew Hartnett, Peter Carr Deva Ramanan, and James Hays. Argoverse 2: Next generation datasets for self-driving perception and forecasting. arXiv preprint arXiv: Arxiv2301.00493, 1 2023.
[3] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 6 2020.
[4] Rohan Chandra, Uttaran Bhattacharya, Aniket Bera, and Dinesh Manocha. Traphic: Trajectory prediction in dense and heterogeneous traffic using weighted interactions.IEEE/CVF CVPR, 2019.
[5] Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jagjeet Singh, Slawomir Bak, Andrew Hartnett, De Wang, Peter Carr, Simon Lucey, Deva Ramanan, and James Hays. Argoverse: 3d tracking and forecasting with rich maps. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 6 2019.
[6] Chih-Wei Chen, Charles Harrison, and Hsin-Hsiung Huang. The unsupervised method of vessel movement trajectory prediction. ArXiv, 2020.41
[7] Guangyi Chen, Zhenhao Chen, Shunxing Fan, and Kun Zhang. Unsupervised sampling promoting for stochastic human trajectory prediction. CVPR, 2023.
[8] Yoshua Bengio Dzmitry Bahdanau, Kyunghyun Cho. Neural machine translation by jointly learning to align and translate. arXiv, 2014.
[9] Neda Masoud Ethan Zhang, Ruixuan Zhang. Predictive trajectory planning for autonomous vehicles at intersections using reinforcement learning. ScienceDirect, 2023.
[10] Maximilian Geisslinger, Phillip Karle, Johannes Betz, and Markus Lienkamp. Watchand-learn-net: Self-supervised online learning for probabilistic vehicle trajectory prediction. IEEE, 2021.
[11] Meng-Hao Guo, Zheng-Ning Liu, Tai-Jiang Mu, and Shi-Min Hu. Beyond selfattention: External attention using two linear layers for visual tasks. arXiv, 2021.
[12] Sepp Hochreiter and J¨urgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997.
[13] Faris Janjos, Maxim Dolgov, and Marius Zollner. Self-supervised action-space prediction for automated driving. IEEE, 2021.
[14] Ruochen Jiao, Xiangguo Liu, Takami Sato, Qi Alfred Chen, and Qi Zhu. Semisupervised semantics-guided adversarial training for robust trajectory prediction. IEEE/CVF, 2023.
[15] D.Barber KC.K.I.Williams. Bayesian classification with gaussian processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998.42
[16] Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M Blei. Automatic differentiation variational inference. Journal of Machine Learning
Research, pages 430–474, 2017.
[17] Nick Lamm, Shashank Jaiprakash, Malavika Srikanth, and Iddo Drori. Vehicle trajectory prediction by transfer learning of semi-supervised models. ArXiv, 2020.
[18] Yann LeCun, L´eon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
[19] Maohan Liang, Ryan Wen Liu, Shichen Li, Zhe Xiao, Xin Liu, and Feng Lu. An unsupervised learning method with convolutional auto-encoder for vessel trajectory
similarity computation. ScienceDirect, 2021.
[20] Mengmeng Liu, Hao Cheng, Lin Chen, Hellward Broszio, Jiangtao Li, Runjiang Zhao, Monika Sester, and Michael Ying Yang. Laformer : Trajectory prediction for autonomous driving with lane-aware scene constraints. ArXiv, 2023.
[21] Rong Liu, Jinling Wang, and Bingqi Zhang. High definition map for automated driving: Overview and analysis. The Journal of Navigation, 73(2):324–341, March 2020.
[22] Pei Lv, Wentong Wang, Yunxin Wang, Yuzhen Zhang, Mingliang Xu, and Changsheng Xu. Ssagcn: Social soft attention graph convolution network for pedestrian trajectory prediction. IEEE, 2023.
[23] Isabel Marti, Vicente R.Tomas, Arturo Saez, and Juan J.Martinez. A rule-based multi-agent system for road traffic management. 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, 2009.
[24] Amir Rasouli Mozhgan Pourkeshavarz, Changhe Chen. Learn tarot with mentor: A meta-learned self-supervised approach for trajectory prediction. IEEE/CVF CVPR, 2023.
[25] Mohan M.Trivedi Nachiket Deo. Convolutional social pooling for vehicle trajectory prediction. The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, 2018.
[26] Daehee Park, Hobin Ryu, Yunseo Yang, Jegyeong Cho, Jiwon Kim, and Kuk-Jin Yoon. Leveraging future relationship reasoning for vehicle trajectory prediction. Arxiv, 2023.
[27] Carole G. Prevost, Andre Desbiens, and Eric Gagnon. Extended kalman filter for state estimation and trajectory prediction of a moving object detected by an unmanned aerial vehicle. In 2007 American Control Conference, pages 1805-1810,2007.
[28] P.Mello R.Cucchiara, M.Piccardi. Image analysis and rule-based reasoning for a traffic monitoring system. IEEE Transactions on Intelligent Transportation Systems,pages 119–130, 2000.
[29] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-propagating errors. Nature, 323(6088):533–536, 1986.
[30] Martin Treiber, Arne Kesting, and Dirk Helbing. Delays, inaccuracies and anticipation in microscopic traffic models. Physica A: Statistical Mechanics and its Applications, 389(21):4275–4288, 2010.
[31] Li-Wu Tsao, Yan-Kai Wang, Hao-Siang Lin, Hong-Han Shuai, Lai-Kuan Wong, and Wen-Huang Cheng. Social-ssl: Self-supervised cross-sequence representation learning based on transformers for multi-agent trajectory prediction. ECCV, 2022.
[32] Chia Hong Tseng, Jie Zhang, Min-Te Sun, Kazuya Sakai, and Wei-Shinn Ku. Multimodal transformer path prediction for autonomous vehicle. ArXiv, 2022.
[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv, 2017.
[34] Jiaqi Xiang, Qingdong Li, Xiwang Dong, and Zhang Ren. Continuous control with deep reinforcement learning for mobile robot navigation. IEEE, 2019.
[35] Zhongliang Zhao, Mostafa Karimzadeh, Lucas Pacheco, Hugo Santos, Denis Rosario, Torsten Braun, and Eduardo Cerqueira. Mobility management with transferable reinforcement learning trajectory prediction. IEEE, 2020.
[36] Zikang Zhou, Jianping Wang, Yung-Hui Li, and Yu-Kai Huang. Query-centric trajectory prediction. IEEE/CVF CVPR, 2023. |