博碩士論文 111522091 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:171 、訪客IP:18.227.79.64
姓名 翁浩宇(Hao-Yu-Weng)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 植基於 EMD 的可回復式資訊隱藏與偽裝技術之研究
(Reversible Data Hiding and Steganographic Techniques Based on Exploiting Modification Direction)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-6-21以後開放)
摘要(中) 偽裝術(Steganography)與可回復式資料隱藏(Reversible Data Hiding, RDH)是廣泛用於資料隱私保護以及確保資料機密性的技術。在這類型的研究中,我們致力於提升與追求偽裝影像的不可察覺性(Imperceptibility)、不可檢測性(Undetectability)、高嵌入容量(Embedding Capacity, EC)以及優良的偽裝影像品質(Image Quality)。在本研究論文當中,我們針對 Steganography 以及 RDH 領
域提出了兩種基於 Exploiting Modification Direction (EMD)的技術,以提升其嵌入容量、影像品質並確保其不可察覺性。在第一項技術中,我們提出了一種基於時鐘調整模型(Clock Adjusted Model, CAM)的參數化多層式 EMD(Parameterized Multilayer-EMD with Clock-Adjusted Model, PMEMD-CAM)應用於 Steganography;在第二項技術中,我們提出了一種基於可控制的泛化式 EMD 應用於基於影像插值法的可回復式資訊隱藏技術(Controllable Generalized EMD on Interpolationbased RDH, CGEMD-IRDH)。這兩項技術皆利用了本研究所提出的 EMD 方法,與現有的最新技術相比,具有更高的嵌入容量與良好的影像品質。根據實驗結果顯示,兩種所提出的技術在資料嵌入容量(EC)與峰值訊號雜訊比(Peak-Signal
Noise Ratio, PSNR)方面優於現有的 Steganography 以及 IRDH 研究方法。另一方面,透過安全分析與檢測實驗,結果顯示本研究所提出的兩種技術皆兼備良好的不可檢測性。
摘要(英) Steganography and Reversible Data Hiding (RDH) are widely used techniques for protecting data privacy and ensuring data confidentiality. In such research, the desired attributes always include undetectability, imperceptibility, a high embedding capacity (EC), and excellent image quality for the stego-image. In this paper, we propose two Exploiting Modification Direction (EMD)-based approaches for Steganography and RDH to enhance imperceptibility and EC. In the first approach for Steganography, we propose a Parameterized Multilayer-EMD with Clock-Adjusted Model (PMEMD-CAM); in the second approach, an interpolation-based RDH (IRDH) with controllable generalized EMD (CGEMD-IRDH) is proposed. Both techniques take advantage of the proposed EMD techniques, resulting in a high embedding capacity and good image quality compared to the existing state-of-the-art schemes. Experimental results demonstrate that both of the proposed methods are superior to the existing Steganography and IRDH schemes in terms of EC and Peak-Signal Noise Ratio (PSNR). Furthermore, the results of security analysis indicate the good undetectability of the two proposed methods.
關鍵字(中) ★ 偽裝學
★ 可回復式資訊隱藏
★ 資料容量
★ 時鐘調整模型
★ 影像插值
關鍵字(英) ★ Steganography
★ Reversible Data Hiding
★ Exploiting Modification Direction
★ Hiding Capacity
★ Clock Adjustment Model
★ Image Interpolation
論文目次 Table of Content
Abstract ii
List of Figures v
List of Tables vi
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Background 2
1.3 Contributions 4
Chapter 2 Background and Related Work 5
2.1 Technical Foundations 5
2.1.1 Exploiting Modification Direction 5
2.1.2 Image Interpolation Techniques 6
2.2 Related Works 8
2.2.1 Data Hiding Method Based on 3D Magic Cube 8
2.2.2 A Multilayer Steganographic Method Using Improved Exploiting Modification Directions 9
2.2.3 A data hiding scheme based on the difference of image interpolation algorithms 10
2.2.4 Reversible Data Hiding Method for Interpolated Images Based on Modulo Operation and Prediction-Error Expansion 11
2.3 Preliminary Summary 12
Chapter 3 Expansion High Payload of Imperceptible steganography using Parameterized Multilayer-EMD and Clock-adjusted Model 14
3.1 Overall Framework of the Proposed Method 14
3.2 Data Embedding Procedure 15
3.3 Data Extraction Procedure 18
3.4 Illustration of Clock-Adjusted Model 19
3.5 Illustration of Multilayer Data Embedding and Extraction 20
Chapter 4 High-Payload Reversible Data Hiding Scheme Based on Image Interpolation with Controllable and Generalized Exploiting Modification Direction 23
4.1 Overall Framework of the proposed method 23
4.2 Image down-sampling and interpolation 23
4.3 Controllable and Generalized Exploiting Modification Direction 25
4.4 Data Extraction and Image Recovery 30
4.5 Implementation of the Proposed Method 31
Chapter 5 Experimental Results and Analyses 33
5.1 Evaluations Metrics 33
5.2 Tested Images 34
5.2.1 USC-SIPI Image database 34
5.2.2 BOSSBase 1.01 35
5.3 Performance Evaluations and Comparisons 36
5.3.1 Performance of the proposed PMEMD-CAM algorithm 36
5.3.2 Performance of the proposed CGEMD-IRDH algorithm 39
5.4 Security Analyses 49
5.4.1 RS Steganalysis 49
5.4.2 Pixel Histogram Analysis 52
5.5 Comprehensive Comparison between two proposed methods 55
Chapter 6 Conclusion 57
Reference 58
參考文獻 [1]. T. Liu and Z. D. Qiu, “A DWT-based color image steganography scheme,” in Proceedings of the 6th International Conference on Signal Processing, Beijing, China, 2002, vol. 2, pp. 1568-1571.
[2]. M. Ramkumar, A. N. Akansu, and A. A. Alatan, “A robust data hiding scheme for images using DFT,” in Proceedings of the International Conference on Image Processing, Kobe, Japan, 1999, vol. 2, pp. 211-215.
[3]. C. C. Lin and P. F. Shiu, “High capacity data hiding scheme for DCT-based images,” Journal of Information Hiding and Multimedia Signal Processing, vol. 1, no. 3, pp. 196-209, 2010.
[4]. X. Zhang, “Reversible data hiding with optimal value transfer,” IEEE Transactions on Multimedia, vol. 15, no. 2, pp. 316-325, 2013.
[5]. B. Xia, A. Wang, C. C. Chang, and L. Liu, “Reversible data hiding for VQ indices using hierarchical state codebook mapping,” Multimedia Tools and Applications, vol. 77, no. 1, pp. 20519-20533, 2018.
[6]. X. Zhang, “Reversible data hiding in encrypted image,” IEEE Signal Processing Letters, vol. 18, no. 4, pp. 255-258, 2011.
[7]. W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques for data hiding,” IBM System Journal, vol. 35, no. 3-4, pp. 313-336, 1996.
[8]. C. K. Chan and L. M. Cheng, “Hiding data in images by simple LSB substitution,” Pattern Recognition, vol. 37, no. 3, pp. 469-474, 2004.
[9]. J. Fridrich, M. Goljan, and R. Du, “Reliable detection of LSB steganography in color and grayscale images,” in Proceedings of the Workshop on Multimedia and Security: New Challenges, 2001, pp. 27-30.
[10]. X. Zhang and S. Wang, “Efficient steganographic embedding by exploiting modification direction,” IEEE Communications Letters, vol. 10, no. 11, pp. 781-783, 2006.
[11]. C. F. Lee, Y. R. Wang and C. C. Chang, “A steganographic method with high embedding capacity by improving exploiting modification direction”, in Proceedings of Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), Nov. 2007. pp. 497-500.
[12]. Z. S. Younus and M. K. Hussain, “Image steganography using exploiting modification direction for compressed encrypted data,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 6, part A, pp. 2951-2963, 2022.
[13]. N. Cevik, T. Cevik, O. Osman, A. Gurhanli, S. Nematzadeh, and F. Sahin, “Improved exploiting modification direction steganography for hexagonal image processing,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 10, part B, pp. 9273-9283, 2022.
[14]. C. F. Lee, Y. R. Wang, and C. C. Chang, “A steganographic method with high embedding capacity by improving exploiting modification direction,” in Proceedings of the 3rd International Conference of Intelligence Information Hiding Multimedia Signal Processing (IIH-MSP), 2007, pp. 497–500.
[15]. Y. C. Weng, W. C. Kuo, C. C. Wang, and Y. C. Huang, “A novel new idea of data hiding using GEMD technique,” in Proceeding of IEEE International Conference on Applied System Invention (ICASI), 2018, pp. 1330-1333.
[16]. Y. Liu, C. Yang and Q. Sun, “Enhance embedding capacity of generalized exploiting modification directions in data hiding,” IEEE Access, vol. 6, pp. 5374-5378, 2018.
[17]. S. Solak, “High embedding capacity data hiding technique based on EMSD and LSB substitution algorithms,” IEEE Access, vol. 8, pp. 166513-166524, 2020.
[18]. H. S. Leng, J. F. Lee, and H. W. Tseng, “A high payload EMD-based steganographic method using two extraction functions,” Digital Signal Processing, vol. 113, p. 103026, 2021.
[19]. B. B. Xia, A. H. Wang, C. C. Chang, and L. Liu, “An image steganography scheme using 3D-Sudoku,” Journal of Information Hiding Multimedia Signal Processing, vol. 7, no. 4, pp. 836–845, 2016.
[20]. C. C. Chang, Y. Liu, and T. S. Nguyen, “A novel turtle shell-based scheme for data hiding,” in Proceedings of the 10th Internal Conference Intelligence Information Hiding Multimedia Signal Processing (IIH-MSP), 2014, pp. 89–93.
[21]. H. Leng and H. Tseng, “Maximizing the payload of the octagon-shaped shell-based data hiding scheme,” in Proceedings of IEEE 8th International Conference on Awareness Science and Technology (iCAST), 2017, pp. 45-49.
[22]. C. F. Lee and Y. X. Wang, “An image hiding scheme based on magic signet,” Journal of Electronic Science and Technology, vol. 18, no. 1, pp. 93–101, 2020.
[23]. C. F. Lee, Y.X. Wang, and A.T. Shih, “Image steganographic method based on pencil-shaped pattern,” Lecture Notes in Electrical Engineering, vol 425, pp. 301–305, 2017.
[24]. X. Z. Xie, C. C. Lin, and C. C. Chang, “Data Hiding Based on a Two-Layer Turtle Shell Matrix,” Symmetry, vol. 10, no. 2, pp. 47:1-14, 2018.
[25]. H. S. Leng and H. W. Tseng, “Generalize the EMD scheme on an N-dimensional hypercube with maximum payload,” Multimedia Tools and Application, vol. 78, no. 13, pp. 18363–18377, 2019.
[26]. C. F. Lee, J. J. Shen, S. Agrawal, Y. X. Wang and Y. H. Lee, “Data hiding method based on 3D magic cube,” IEEE Access, vol. 8, pp. 39445-39453, 2020.
[27]. C. F. Lee, J. J. Shen, S. Agrawal, and Y. H. Li, “High-capacity embedding method based on double-layer octagon-shaped shell matrix,” Symmetry, vol. 13, no. 4, pp. 583, Apr. 2021.
[28]. H. S. Leng, C. J. Tsai and T. J. Wu, “A multilayer steganographic method using improved exploiting modification directions scheme,” IEEE Access, vol. 10, pp. 468-485, 2022.
[29]. A. K. Sahu, G. Swain, M. Sahu, and J. Hemalatha, “Multi-directional block-based PVD and modulus function image steganography to avoid FOBP and IEP,” Journal of Information Security and Applications, vol. 58, p. 102808, 2021.
[30]. M. Sahu, N. Padhy, and S. S. Gantayat, “Multi-directional PVD steganography avoiding PDH and boundary issue,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 10, part A, pp. 8838-8851, 2022.
[31]. D. C. Wu and W. H. Tsai, “A steganographic method for images by pixel-value differencing,” Pattern Recognition Letter, vol. 24, pp. 1613–1626, 2003.
[32]. S. Y. Shen and L. H. Huang, “A data hiding scheme using pixel value differencing and improving exploiting modification directions,” Computer and Security, vol. 48, pp. 131–141, 2015.
[33]. J. Tian, “Reversible data embedding using a difference expansion,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 8, pp. 890-896, 2003.
[34]. S. Gujjunoori and M. Oruganti, “Difference expansion based reversible data embedding and edge detection,” Multimedia Tools and Applications, vol. 78, no. 18, pp. 25889, 2019.
[35]. F. Peng, W. Jiang, M. Long, and K. Li, “A reversible watermarking for 2D engineering graphics based on difference expansion with adaptive interval partitioning,” IEEE Transactions on Dependable and Secure Computing, vol. 20, no. 3, pp. 1867-1881, 2023.
[36]. Z. Yi, Y. Q. Shi, N. Ansari and W. Su, “Reversible data hiding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, no. 3, pp. 354-362, 2006.
[37]. H. Wu, X. Li, X. Luo, X. Zhang, and Y. Zhao, “General expansion-shifting model for reversible data hiding: theoretical investigation and practical algorithm design,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 9, pp. 5989-6001, 2022.
[38]. C. L. Jhong and H. L. Wu, “Grayscale-invariant reversible data hiding based on multiple histograms modification,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 9, pp. 5888-5901, 2022.
[39]. W. He, G. Xiong, and Y. Wang, “Reversible data hiding based on adaptive multiple histograms modification,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 3000-3012, 2021.
[40]. D. M. Thodi and J. J. Rodriguez, “Expansion embedding techniques for reversible watermarking,” IEEE Transactions on Image Processing, vol. 16, no. 3, pp. 721-730, 2007.
[41]. C. Zhang and B. Ou, “Reversible data hiding based on multiple adaptive two-dimensional prediction-error histograms modification,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 7, pp. 4174-4187, 2022.
[42]. B. Ou, X. Li, W. Zhang, and Y. Zhao, “Improving pairwise PEE via hybrid-dimensional histogram generation and adaptive mapping selection,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 29, no. 7, pp. 2176-2190, 2019.
[43]. T. Zhang, X. Li, W. Qi, and Z. Guo, “Location-based PVO and adaptive pairwise modification for efficient reversible data hiding,” IEEE Transactions on Information Forensics and Security, vol. 15, pp. 2306–2319, 2020.
[44]. S. Xiang and G. Ruan, “Efficient PVO-based reversible data hiding by selecting blocks with full-enclosing context,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 5, pp. 2868-2880, 2022.
[45]. X. Kong and Z. Cai, “An information security method based on optimized high-fidelity reversible data hiding,” IEEE Transactions on Industrial Informatics, vol. 18, no. 12, pp. 8529-8539, 2022.
[46]. L. Luo, Z. Chen, M. Chen, X. Zeng, and Z. Xiong, “Reversible image watermarking using interpolation technique,” IEEE Transactions on Information Forensics and Security, vol. 5, no. 1, pp. 187-193, 2010.
[47]. J. A. Kaw, S. A. Parah, J. A. Sheikh, and G. M. Bhat, “A new reversible stenographic technique based on pixel repetition method (PRM) and special data shifting (SDS),” in Proceedings of the 4th International Conference on Image Information Processing, Shimla, India, 2017, pp. 1-6.
[48]. J. Jung and K. Yoo, “Data hiding method using image interpolation,” Computers Standards and Interfaces, vol. 31, no. 2, pp. 465-470, 2009.
[49]. C. F. Lee and Y. L. Huang, “An efficient image interpolation increasing payload in reversible data hiding,” Expert Systems with Applications, vol. 39, pp. 6712-6719, 2012.
[50]. Y. T. Chang, C. T. Huang, C. F. Lee, and S. J. Wang, “Image interpolating based data hiding in conjunction with pixel-shifting of histogram,” Journal of Supercomputing, vol. 66, pp. 1093-1110, 2013.
[51]. A. Malik, G. Sikka, and H. K. Verma, “Image interpolation based high capacity reversible data hiding scheme,” Multimedia Tools and Applications, vol. 76, no. 17, pp. 24107-24123, 2017.
[52]. F. S. Hassan and A. Gutub, “Efficient image reversible data hiding technique based on interpolation optimization,” Arabian Journal for Science and Engineering, vol. 46, pp. 8441-8456, 2021.
[53]. X. Bai, Y. Chen, G. Duan, C. Feng, and W. Zhang, “A data hiding scheme based on the difference of image interpolation algorithms,” Journal of Information Security and Applications, vol. 65, pp. 103068, 2022.
[54]. F. S. Hassan and A. Gutub, “Novel embedding secrecy within images utilizing an improved interpolation-based reversible data hiding scheme,” Journal of King Saud University – Computer and Information Sciences, vol. 34, no. 5, pp. 553-563, 2022.
[55]. M. Fan, S. Zhong, and X. Xiong, “Reversible data hiding method for interpolated images based on modulo operation and prediction-error expansion,” IEEE Access, vol. 11, pp. 27290-27302, 2023.
[56]. USC-SIPI Image Database. Accessed: March. 5, 2024. [Online]. Available: http://sipi.usc.edu/database/.
指導教授 王尉任 黃正達(Wei-Jen Wang Cheng-Ta Huang) 審核日期 2024-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明