博碩士論文 111552006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:18.220.1.11
姓名 楊世鴻(Shih-Hong Yang)  查詢紙本館藏   畢業系所 資訊工程學系在職專班
論文名稱 慣性和地磁感測陣列的無人機導航
(Unmanned Aerial Vehicle Navigation with Inertial and Geomagnetic Sensor Array)
相關論文
★ 整合GRAFCET虛擬機器的智慧型控制器開發平台★ 分散式工業電子看板網路系統設計與實作
★ 設計與實作一個基於雙攝影機視覺系統的雙點觸控螢幕★ 智慧型機器人的嵌入式計算平台
★ 一個即時移動物偵測與追蹤的嵌入式系統★ 一個固態硬碟的多處理器架構與分散式控制演算法
★ 基於立體視覺手勢辨識的人機互動系統★ 整合仿生智慧行為控制的機器人系統晶片設計
★ 嵌入式無線影像感測網路的設計與實作★ 以雙核心處理器為基礎之車牌辨識系統
★ 基於立體視覺的連續三維手勢辨識★ 微型、超低功耗無線感測網路控制器設計與硬體實作
★ 串流影像之即時人臉偵測、追蹤與辨識─嵌入式系統設計★ 一個快速立體視覺系統的嵌入式硬體設計
★ 即時連續影像接合系統設計與實作★ 基於雙核心平台的嵌入式步態辨識系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-20以後開放)
摘要(中) 無人機在無GNSS環境下,通常使用電腦視覺方法或是慣性導航。然而電腦視覺方法容易被環境光源影響。而現行的慣性導航有雜訊與誤差的問題,精度較高的慣性感測器有著成本高且體積大的缺點。因此我們採用MIAT系統設計方法論設計了高精度且低成本的無人機導航系統,它是基於一個慣性與地磁感測陣列及一個微控制器,透過校正演算法、卡爾曼濾波器、深度學習模型來降低導航的誤差。實驗結果顯示,我們的方法比起單一慣性感測器,在水平方向的矩形路徑實驗中平均定位誤差從11.3公尺降至1.65公尺,以及水平方向的圓形路徑實驗中平均定位誤差從7.11公尺減少至2.87公尺。此外在無人機實驗中,經過90秒的飛行後平均定位誤差為1.65公尺,證明我們的無人機導航系統的優秀性能。
摘要(英) In environments without GNSS, drones typically rely on either computer vision techniques or inertial navigation systems. However, computer vision can be significantly affected by environmental lighting, while current inertial navigation systems suffer from noise and inaccuracies. Higher precision sensors are also costly and bulky. To address these challenges, we designed a high-accuracy, low-cost drone navigation system using the MIAT system design methodology. Our system is based on an array of inertial and geomagnetic sensors, along with a microcontroller. It employs a calibration algorithm, filters, and a deep learning model to reduce navigational errors. Experimental results demonstrate that our method significantly reduces the average position error in a horizontal rectangular path experiment from 11.3 meters to 1.65 meters, and in a horizontal circular path experiment from 7.11 meters to 2.87 meters. Additionally, during drone experiments, after 90 seconds of flight, the average position error was 1.65 meters, proving the superior performance of our drone navigation system.
關鍵字(中) ★ 無人機
★ 慣性導航
★ 遞迴神經網路
關鍵字(英) ★ UAV
★ Inertial navigation system
★ RNN
論文目次 中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1研究背景 1
1-2 研究目的 3
1-3論文架構 3
第二章 技術回顧 4
2-1慣性導航系統 4
2-2 卡爾曼濾波器 5
2-3 自編碼器 8
2-4 遞迴神經網路 9
2-5 MIAT系統設計方法論 12
2-5-1 IDEF0 12
2-5-2 GRAFCET 14
2-5-3 高階合成 16
第三章 慣性和地磁感測陣列的無人機導航系統架構設計 17
3-1 無人機飛行系統 17
3-2 感測器模組 18
3-3 資料處理模組 19
3-3-1 校正模組 20
3-3-2 深度學習模型 25
3-4 導航模組 27
3-4 導航系統設計 29
3-5-1 感測器模組設計 30
3-5-2 感測器陣列初始化系統設計 32
3-5-3 資料處理模組設計 33
3-5-4 校正模組設計 34
3-5-5 導航模組設計 36
3-6 軟體合成及驗證 37
第四章 系統整合驗證與實驗 39
4-1 實驗平台與工具 39
4-1-1 微控制器平台 39
4-1-2 九軸感測器 41
4-1-3 I2C多工器 42
4-1-4 無人機 42
4-1-5 實驗環境 43
4-2 資料收集 45
4-2-1 感測器資料收集 45
4-2-2 位移、面向資料收集 47
4-3 感測資料校正實驗 49
4-4 模型訓練 56
4-5 評估指標 57
4-6 水平方向移動實驗 58
4-6-1矩形路徑的導航實驗 59
4-6-2 圓形路徑的導航實驗 61
4-7 無人機導航實驗 63
第五章 結論與未來展望 66
5-1 結論 66
5-2 未來展望 67
參考文獻 68
參考文獻 [1] G. Balamurugan, J. Valarmathi, and V. P. S. Naidu, “Survey on UAV navigation in GPS denied environments,” in 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), 2016, pp. 198–204.
[2] G. Huang, “Visual-Inertial Navigation: A Concise Review,” in 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 9572–9582.
[3] M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, and M. Debbah, “A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems,” IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2334–2360, 2019.
[4] C. Shen et al., “Seamless GPS/Inertial Navigation System Based on Self-Learning Square-Root Cubature Kalman Filter,” IEEE Transactions on Industrial Electronics, vol. 68, no. 1, pp. 499–508, 2021.
[5] X. Zuo, P. Geneva, W. Lee, Y. Liu, and G. Huang, “Lic-fusion: Lidar-inertial-camera odometry,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019, pp. 5848–5854.
[6] J. Otegui, A. Bahillo, I. Lopetegi, and L. E. Díez, “Performance Evaluation of Different Grade IMUs for Diagnosis Applications in Land Vehicular Multi-Sensor Architectures,” IEEE Sens J, vol. 21, no. 3, pp. 2658–2668, 2021.
[7] M. Narasimhappa, A. D. Mahindrakar, V. C. Guizilini, M. H. Terra, and S. L. Sabat, “MEMS-Based IMU Drift Minimization: Sage Husa Adaptive Robust Kalman Filtering,” IEEE Sens J, vol. 20, no. 1, pp. 250–260, 2020.
[8] M. Petovello, E. Cannon, and G. Lachapelle, “Benefits of Using a Tactical-Grade IMU for High-Accuracy Positioning,” Navigation, vol. 51, pp. 1–12, Jul. 2004.
[9] M. Perlmutter and L. Robin, “High-performance, low cost inertial MEMS: A market in motion!,” in Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium, 2012, pp. 225–229.
[10] Z. Wang, “3-D integration and through-silicon vias in MEMS and microsensors,” Journal of Microelectromechanical Systems, vol. 24, no. 5, pp. 1211–1244, 2015.
[11] E. A. Wan and R. Van Der Merwe, “The unscented Kalman filter for nonlinear estimation,” in Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), 2000, pp. 153–158.
[12] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004.
[13] Y. Wang, H. Yao, and S. Zhao, “Auto-encoder based dimensionality reduction,” Neurocomputing, vol. 184, pp. 232–242, 2016.
[14] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput, vol. 9, no. 8, pp. 1735–1780, 1997.
[15] H. Lu, L. Jin, X. Luo, B. Liao, D. Guo, and L. Xiao, “RNN for Solving Perturbed Time-Varying Underdetermined Linear System With Double Bound Limits on Residual Errors and State Variables,” IEEE Trans Industr Inform, vol. 15, no. 11, pp. 5931–5942, 2019.
[16] C.-H. Chen, M.-Y. Lin, and X.-C. Guo, “High-level modeling and synthesis of smart sensor networks for Industrial Internet of Things,” Computers & Electrical Engineering, vol. 61, pp. 48–66, 2017.
[17] C. Menzel and R. J. Mayer, “The IDEF family of languages,” in Handbook on architectures of information systems, Springer, 1998, pp. 209–241.
[18] R. David, “Grafcet: A powerful tool for specification of logic controllers,” IEEE transactions on control systems technology, vol. 3, no. 3, pp. 253–268, 1995.
[19] D. Tedaldi, A. Pretto, and E. Menegatti, “A robust and easy to implement method for IMU calibration without external equipments,” in 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 3042–3049.
[20] D. Feng, C. Wang, C. He, Y. Zhuang, and X.-G. Xia, “Kalman-Filter-Based Integration of IMU and UWB for High-Accuracy Indoor Positioning and Navigation,” IEEE Internet Things J, vol. 7, no. 4, pp. 3133–3146, 2020.
[21] V. R. F. Miranda, A. M. C. Rezende, T. L. Rocha, H. Azpúrua, L. C. A. Pimenta, and G. M. Freitas, “Autonomous Navigation System for a Delivery Drone,” Journal of Control, Automation and Electrical Systems, vol. 33, no. 1, pp. 141–155, 2022.
[22] S. Nassar, “Improving the inertial navigation system (INS) error model for INS and INS/DGPS applications,” 2003.
指導教授 陳慶瀚(Ching-Han Chen) 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明