博碩士論文 111522118 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:178 、訪客IP:18.191.132.36
姓名 蘇聖益(Sheng-Yi Su)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 生成式AI賦能的回饋機器人用於改善學習成效
(Improving Learning Achievement with a Generative AI-Enabled Feedback Chatbot)
相關論文
★ 應用智慧分類法提升文章發佈效率於一企業之知識分享平台★ 家庭智能管控之研究與實作
★ 開放式監控影像管理系統之搜尋機制設計及驗證★ 資料探勘應用於呆滯料預警機制之建立
★ 探討問題解決模式下的學習行為分析★ 資訊系統與電子簽核流程之總管理資訊系統
★ 製造執行系統應用於半導體機台停機通知分析處理★ Apple Pay支付於iOS平台上之研究與實作
★ 應用集群分析探究學習模式對學習成效之影響★ 應用序列探勘分析影片瀏覽模式對學習成效的影響
★ 一個以服務品質為基礎的網際服務選擇最佳化方法★ 維基百科知識推薦系統對於使用e-Portfolio的學習者滿意度調查
★ 學生的學習動機、網路自我效能與系統滿意度之探討-以e-Portfolio為例★ 藉由在第二人生內使用自動對話代理人來改善英文學習成效
★ 合作式資訊搜尋對於學生個人網路搜尋能力與策略之影響★ 數位註記對學習者在線上學習環境中反思等級之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-1以後開放)
摘要(中) 本研究介紹了PyFeedbacker,一款結合了先進的生成式AI技術和機器人功
能的教育工具。PyFeedbacker的核心特色在於其能夠提供針對性的概念回饋與程
式設計回饋,概念回饋透過生成式AI比對範例總結與學生總結,提供關鍵字與
概念提示,幫助學生進一步完善其概念,並生成針對性回饋,從而精確提供學生
所需的概念回饋;程式設計回饋能回答學生在程式設計實作過程中的提問,
PyFeedbacker 能分析學生的程式碼,並提供錯誤診斷與改進建議作為程式設計回
饋,從而使學生在程式設計的學習過程中能更快地識別和修正問題,進而提高解
決問題的能力。本研究展示了生成式AI技術在教育應用上的可能性,有望在教
育回饋產生上減少對於教師、助教的依賴,進而改變教育資源的配置方式。本研
究詳細闡述了PyFeedbacker的系統架構設計、生成式AI技術的整合過程,以及
其在教育實踐中的實驗設計及成果。在實證研究方面,我們在大學的Python 程
式設計課程中對 PyFeedbacker 進行了實驗,以評估其在提高學生學習成效和激
發學習動機、學習策略方面的效果。實驗結果顯示,學生在使用PyFeedbacker進
行學習時,不僅學習成效得到提升,學習動機與策略也隨之增強。本研究不僅證
實了PyFeedbacker 在教育領域的應用價值,也展示了生成式AI技術與教育整合
的潛力及生成式AI-人類協作模式的實際應用。
摘要(英) This study introduces PyFeedbacker, an educational tool that combines advanced
generative AI technology with robotic functions. The core feature of PyFeedbacker is
its ability to provide targeted conceptual feedback and programming feedback.
Conceptual feedback offers hints related to concepts and keywords to help students
improve their understanding. This feature uses generative AI to compare examples with
student summaries and generates corresponding feedback. Programming feedback
addresses students′ questions during programming exercises. PyFeedbacker analyzes
students′ code, provides error diagnosis, and offers improvement suggestions, enabling
students to quickly identify and correct issues, thus enhancing their problem-solving
skills. The study demonstrates the potential of generative AI technology in educational
applications, promising to reduce reliance on teachers and teaching assistants for
feedback, and potentially changing the allocation of educational resources. The
research details the system architecture design of PyFeedbacker, the integration process
of generative AI technology, and the experimental design and outcomes in educational
practice. In the empirical research, we conducted experiments with PyFeedbacker in a
university Python programming course to evaluate its effectiveness in improving
students′ learning outcomes and motivating learning strategies. The results showed that
students not only improved their learning outcomes but also enhanced their motivation
and strategies when using PyFeedbacker. This study not only confirms the value of
PyFeedbacker in the field of education but also showcases the potential of integrating
generative AI technology with education and the practical application of the generative
AI-human collaboration model.
關鍵字(中) ★ 生成式AI
★ 機器人
★ 概念回饋
★ 程式設計回饋
★ 學習成效
關鍵字(英) ★ generative AI
★ robot
★ concept feedback
★ programming feedback
★ learning achievement
論文目次 目錄
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
1 緒論 1
2 文獻探討 4
2.1 聊天機器人在教育上的應用 4
2.2 生成式AI 6
2.3 總結寫作 7
2.4 輔助程式設計 8
3 系統開發 9
3.1 PyFeedbacker 介面介紹 9
3.2 基於生成式AI的概念回饋功能 10
3.2.1 概念回饋系統架構 13
3.2.2 生成範例內容流程 14
3.2.3 概念回饋內容 16
3.2.4 概念回饋內容驗證方式 18
3.3 基於生成式AI的程式設計回饋功能 19
3.3.1 程式設計回饋系統架構 20
3.3.2 程式設計回饋內容 22
3.3.3 程式設計回饋內容驗證方式 23
4 方法論 24
4.1 參與者 24
4.2 學習環境介紹 25
4.3 實驗設計與課程活動 27
4.4 評量工具 29
5 實驗結果 34
5.1 生成式AI賦能的回饋機器人是否能提升學習成績? (RQ1) 34
5.2 生成式AI賦能的回饋機器人是否能改善學習動機與學習策略? (RQ2) 35
6 討論 39
7 限制與未來研究 40
8 參考文獻 41
參考文獻 8 參考文獻
Benedetto, L., & Cremonesi, P. (2019). Rexy, a configurable application for building virtual teaching assistants. Human-Computer Interaction–INTERACT 2019: 17th IFIP TC 13 International Conference, Paphos, Cyprus, September 2–6, 2019, Proceedings, Part II 17,
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., & Askell, A. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33, 1877-1901.
Budianto, A., Setyosari, P., Kuswandi, D., & Ulfa, S. (2022). Summaries writing to enhance reading comprehension: Systematic literature review from 2014 to 2021. Eurasian Journal of Applied Linguistics, 8(1), 149-161.
Bull, C., & Kharrufa, A. (2023). Generative AI Assistants in Software Development Education. arXiv preprint arXiv:2303.13936.
Capuano, N., Caballé, S., Conesa, J., & Greco, A. (2021). Attention-based hierarchical recurrent neural networks for MOOC forum posts analysis. Journal of Ambient Intelligence and Humanized Computing, 12, 9977-9989.
Chandrashekara, A. A., Talluri, R. K. M., Sivarathri, S. S., Mitra, R., Calyam, P., Kee, K., & Nair, S. (2018). Fuzzy-based conversational recommender for data-intensive science gateway applications. 2018 IEEE International Conference on Big Data (Big Data),
Chang, D. H., Lin, M. P. C., Hajian, S., & Wang, Q. Q. (2023). Educational Design Principles of Using AI Chatbot That Supports Self-Regulated Learning in Education: Goal Setting, Feedback, and Personalization [Article]. Sustainability (Switzerland), 15(17), Article 12921. https://doi.org/10.3390/su151712921
Chen, E., Huang, R., Chen, H. S., Tseng, Y. H., & Li, L. Y. (2023). GPTutor: A ChatGPT-Powered Programming Tool for Code Explanation. Communications in Computer and Information Science,
Chen, Y., Deng, H., Chen, C. H., & Chung, C. L. (2023). Efficient Artificial Intelligence-Teaching Assistant Based on ChatGPT. International Conference on Smart Systems for Applications in Electrical Sciences, ICSSES 2023,
Dai, W., Lin, J., Jin, H., Li, T., Tsai, Y.-S., Gašević, D., & Chen, G. (2023). Can large language models provide feedback to students? A case study on ChatGPT. 2023 IEEE International Conference on Advanced Learning Technologies (ICALT),
Duke, N. K., & Pearson, P. D. (2009). Effective practices for developing reading comprehension. Journal of education, 189(1-2), 107-122.
Dumais, S. T. (2004). Latent semantic analysis. Annual Review of Information Science and Technology (ARIST), 38, 189-230.
Gozalo-Brizuela, R., & Garrido-Merchán, E. C. (2023). A survey of Generative AI Applications. arXiv preprint arXiv:2306.02781.
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11.
Kardan, A. A., Sadeghi, H., Ghidary, S. S., & Sani, M. R. F. (2013). Prediction of student course selection in online higher education institutes using neural network. Computers & Education, 65, 1-11.
Li, C., Wang, J., Zhang, Y., Zhu, K., Hou, W., Lian, J., Luo, F., Yang, Q., & Xie, X. (2023). Large language models understand and can be enhanced by emotional stimuli. arXiv preprint arXiv:2307.11760.
Li, J., Ling, L., & Tan, C. W. (2021). Blending peer instruction with just-in-time teaching: jointly optimal task scheduling with feedback for classroom flipping. Proceedings of the Eighth ACM Conference on Learning@ Scale,
Lin, C.-J., & Mubarok, H. (2021). Learning analytics for investigating the mind map-guided AI chatbot approach in an EFL flipped speaking classroom. Educational Technology & Society, 24(4), 16-35.
Manna, Z., & Waldinger, R. J. (1971). Toward automatic program synthesis. Communications of the ACM, 14(3), 151-165.
OpenAI. (2023). Prompt engineering. OpenAI. https://platform.openai.com/docs/guides/prompt-engineering
Pintrich, P. R. (1991). A manual for the use of the Motivated Strategies for Learning Questionnaire (MSLQ).
Radmacher, S. A., & Latosi-Sawin, E. (1995). Summary writing: A tool to improve student comprehension and writing in psychology. Teaching of Psychology, 22(2), 113-115.
Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. The Journal of Machine Learning Research, 21(1), 5485-5551.
Sajja, R., Sermet, Y., Cwiertny, D., & Demir, I. (2023). Platform-independent and curriculum-oriented intelligent assistant for higher education [Article]. International Journal of Educational Technology in Higher Education, 20(1), Article 42. https://doi.org/10.1186/s41239-023-00412-7
Sarsa, S., Denny, P., Hellas, A., & Leinonen, J. (2022). Automatic generation of programming exercises and code explanations using large language models. Proceedings of the 2022 ACM Conference on International Computing Education Research-Volume 1,
Schiaffino, S., Garcia, P., & Amandi, A. (2008). eTeacher: Providing personalized assistance to e-learning students. Computers & Education, 51(4), 1744-1754.
Song, D., Rice, M., & Oh, E. Y. (2019). Participation in online courses and interaction with a virtual agent. International Review of Research in Open and Distributed Learning, 20(1).
Spirgel, A. S., & Delaney, P. F. (2016). Does writing summaries improve memory for text? Educational Psychology Review, 28, 171-196.
Strack, J., & Esteves, F. (2015). Exams? Why worry? Interpreting anxiety as facilitative and stress appraisals. Anxiety, Stress, & Coping, 28(2), 205-214.
Sung, Y.-T., Liao, C.-N., Chang, T.-H., Chen, C.-L., & Chang, K.-E. (2016). The effect of online summary assessment and feedback system on the summary writing on 6th graders: The LSA-based technique. Computers & Education, 95, 1-18.
Vekaria, K., Calyam, P., Sivarathri, S. S., Wang, S., Zhang, Y., Pandey, A., Chen, C., Xu, D., Joshi, T., & Nair, S. (2021). Recommender‐as‐a‐service with chatbot guided domain‐science knowledge discovery in a science gateway. Concurrency and Computation: Practice and Experience, 33(19), e6080.
Vijayakumar, B., Höhn, S., & Schommer, C. (2019). Quizbot: Exploring formative feedback with conversational interfaces. Technology Enhanced Assessment: 21st International Conference, TEA 2018, Amsterdam, The Netherlands, December 10–11, 2018, Revised Selected Papers 21,
Wade-Stein, D., & Kintsch, E. (2004). Summary Street: Interactive computer support for writing. Cognition and instruction, 22(3), 333-362.
Waldinger, R. J., & Lee, R. C. (1969). PROW: A step toward automatic program writing. Proceedings of the 1st international joint conference on Artificial intelligence,
Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., & Zhou, D. (2022). Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing systems, 35, 24824-24837.
Wisniewski, B., Zierer, K., & Hattie, J. (2020). The power of feedback revisited: A meta-analysis of educational feedback research. Frontiers in psychology, 10, 487662.
Yang, Y.-F. (2016). Transforming and constructing academic knowledge through online peer feedback in summary writing. Computer Assisted Language Learning, 29(4), 683-702.
Yilmaz, R., & Karaoglan Yilmaz, F. G. (2023). The effect of generative artificial intelligence (AI)-based tool use on students′ computational thinking skills, programming self-efficacy and motivation [Article]. Computers and Education: Artificial Intelligence, 4, Article 100147. https://doi.org/10.1016/j.caeai.2023.100147
Young, J. C., & Shishido, M. (2023). Investigating OpenAI’s ChatGPT Potentials in Generating Chatbot′s Dialogue for English as a Foreign Language Learning [Article]. International Journal of Advanced Computer Science and Applications, 14(6), 65-72. https://doi.org/10.14569/IJACSA.2023.0140607
Zhang, P., & Kamel Boulos, M. N. (2023). Generative AI in medicine and healthcare: Promises, opportunities and challenges. Future Internet, 15(9), 286.
指導教授 楊鎮華(Stephen J.H. Yang) 審核日期 2024-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明