參考文獻 |
8 參考文獻
Benedetto, L., & Cremonesi, P. (2019). Rexy, a configurable application for building virtual teaching assistants. Human-Computer Interaction–INTERACT 2019: 17th IFIP TC 13 International Conference, Paphos, Cyprus, September 2–6, 2019, Proceedings, Part II 17,
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., & Askell, A. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33, 1877-1901.
Budianto, A., Setyosari, P., Kuswandi, D., & Ulfa, S. (2022). Summaries writing to enhance reading comprehension: Systematic literature review from 2014 to 2021. Eurasian Journal of Applied Linguistics, 8(1), 149-161.
Bull, C., & Kharrufa, A. (2023). Generative AI Assistants in Software Development Education. arXiv preprint arXiv:2303.13936.
Capuano, N., Caballé, S., Conesa, J., & Greco, A. (2021). Attention-based hierarchical recurrent neural networks for MOOC forum posts analysis. Journal of Ambient Intelligence and Humanized Computing, 12, 9977-9989.
Chandrashekara, A. A., Talluri, R. K. M., Sivarathri, S. S., Mitra, R., Calyam, P., Kee, K., & Nair, S. (2018). Fuzzy-based conversational recommender for data-intensive science gateway applications. 2018 IEEE International Conference on Big Data (Big Data),
Chang, D. H., Lin, M. P. C., Hajian, S., & Wang, Q. Q. (2023). Educational Design Principles of Using AI Chatbot That Supports Self-Regulated Learning in Education: Goal Setting, Feedback, and Personalization [Article]. Sustainability (Switzerland), 15(17), Article 12921. https://doi.org/10.3390/su151712921
Chen, E., Huang, R., Chen, H. S., Tseng, Y. H., & Li, L. Y. (2023). GPTutor: A ChatGPT-Powered Programming Tool for Code Explanation. Communications in Computer and Information Science,
Chen, Y., Deng, H., Chen, C. H., & Chung, C. L. (2023). Efficient Artificial Intelligence-Teaching Assistant Based on ChatGPT. International Conference on Smart Systems for Applications in Electrical Sciences, ICSSES 2023,
Dai, W., Lin, J., Jin, H., Li, T., Tsai, Y.-S., Gašević, D., & Chen, G. (2023). Can large language models provide feedback to students? A case study on ChatGPT. 2023 IEEE International Conference on Advanced Learning Technologies (ICALT),
Duke, N. K., & Pearson, P. D. (2009). Effective practices for developing reading comprehension. Journal of education, 189(1-2), 107-122.
Dumais, S. T. (2004). Latent semantic analysis. Annual Review of Information Science and Technology (ARIST), 38, 189-230.
Gozalo-Brizuela, R., & Garrido-Merchán, E. C. (2023). A survey of Generative AI Applications. arXiv preprint arXiv:2306.02781.
Hoffait, A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1-11.
Kardan, A. A., Sadeghi, H., Ghidary, S. S., & Sani, M. R. F. (2013). Prediction of student course selection in online higher education institutes using neural network. Computers & Education, 65, 1-11.
Li, C., Wang, J., Zhang, Y., Zhu, K., Hou, W., Lian, J., Luo, F., Yang, Q., & Xie, X. (2023). Large language models understand and can be enhanced by emotional stimuli. arXiv preprint arXiv:2307.11760.
Li, J., Ling, L., & Tan, C. W. (2021). Blending peer instruction with just-in-time teaching: jointly optimal task scheduling with feedback for classroom flipping. Proceedings of the Eighth ACM Conference on Learning@ Scale,
Lin, C.-J., & Mubarok, H. (2021). Learning analytics for investigating the mind map-guided AI chatbot approach in an EFL flipped speaking classroom. Educational Technology & Society, 24(4), 16-35.
Manna, Z., & Waldinger, R. J. (1971). Toward automatic program synthesis. Communications of the ACM, 14(3), 151-165.
OpenAI. (2023). Prompt engineering. OpenAI. https://platform.openai.com/docs/guides/prompt-engineering
Pintrich, P. R. (1991). A manual for the use of the Motivated Strategies for Learning Questionnaire (MSLQ).
Radmacher, S. A., & Latosi-Sawin, E. (1995). Summary writing: A tool to improve student comprehension and writing in psychology. Teaching of Psychology, 22(2), 113-115.
Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. The Journal of Machine Learning Research, 21(1), 5485-5551.
Sajja, R., Sermet, Y., Cwiertny, D., & Demir, I. (2023). Platform-independent and curriculum-oriented intelligent assistant for higher education [Article]. International Journal of Educational Technology in Higher Education, 20(1), Article 42. https://doi.org/10.1186/s41239-023-00412-7
Sarsa, S., Denny, P., Hellas, A., & Leinonen, J. (2022). Automatic generation of programming exercises and code explanations using large language models. Proceedings of the 2022 ACM Conference on International Computing Education Research-Volume 1,
Schiaffino, S., Garcia, P., & Amandi, A. (2008). eTeacher: Providing personalized assistance to e-learning students. Computers & Education, 51(4), 1744-1754.
Song, D., Rice, M., & Oh, E. Y. (2019). Participation in online courses and interaction with a virtual agent. International Review of Research in Open and Distributed Learning, 20(1).
Spirgel, A. S., & Delaney, P. F. (2016). Does writing summaries improve memory for text? Educational Psychology Review, 28, 171-196.
Strack, J., & Esteves, F. (2015). Exams? Why worry? Interpreting anxiety as facilitative and stress appraisals. Anxiety, Stress, & Coping, 28(2), 205-214.
Sung, Y.-T., Liao, C.-N., Chang, T.-H., Chen, C.-L., & Chang, K.-E. (2016). The effect of online summary assessment and feedback system on the summary writing on 6th graders: The LSA-based technique. Computers & Education, 95, 1-18.
Vekaria, K., Calyam, P., Sivarathri, S. S., Wang, S., Zhang, Y., Pandey, A., Chen, C., Xu, D., Joshi, T., & Nair, S. (2021). Recommender‐as‐a‐service with chatbot guided domain‐science knowledge discovery in a science gateway. Concurrency and Computation: Practice and Experience, 33(19), e6080.
Vijayakumar, B., Höhn, S., & Schommer, C. (2019). Quizbot: Exploring formative feedback with conversational interfaces. Technology Enhanced Assessment: 21st International Conference, TEA 2018, Amsterdam, The Netherlands, December 10–11, 2018, Revised Selected Papers 21,
Wade-Stein, D., & Kintsch, E. (2004). Summary Street: Interactive computer support for writing. Cognition and instruction, 22(3), 333-362.
Waldinger, R. J., & Lee, R. C. (1969). PROW: A step toward automatic program writing. Proceedings of the 1st international joint conference on Artificial intelligence,
Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., & Zhou, D. (2022). Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing systems, 35, 24824-24837.
Wisniewski, B., Zierer, K., & Hattie, J. (2020). The power of feedback revisited: A meta-analysis of educational feedback research. Frontiers in psychology, 10, 487662.
Yang, Y.-F. (2016). Transforming and constructing academic knowledge through online peer feedback in summary writing. Computer Assisted Language Learning, 29(4), 683-702.
Yilmaz, R., & Karaoglan Yilmaz, F. G. (2023). The effect of generative artificial intelligence (AI)-based tool use on students′ computational thinking skills, programming self-efficacy and motivation [Article]. Computers and Education: Artificial Intelligence, 4, Article 100147. https://doi.org/10.1016/j.caeai.2023.100147
Young, J. C., & Shishido, M. (2023). Investigating OpenAI’s ChatGPT Potentials in Generating Chatbot′s Dialogue for English as a Foreign Language Learning [Article]. International Journal of Advanced Computer Science and Applications, 14(6), 65-72. https://doi.org/10.14569/IJACSA.2023.0140607
Zhang, P., & Kamel Boulos, M. N. (2023). Generative AI in medicine and healthcare: Promises, opportunities and challenges. Future Internet, 15(9), 286. |