博碩士論文 111522122 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:150 、訪客IP:3.12.36.175
姓名 林承妍(Cheng-Yan Lin)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 透過生成式AI產生之程式流程圖提升學生學習成效
(Enhancing Student Learning Effectiveness through Program Flowcharts Generated by GenAI)
相關論文
★ 應用智慧分類法提升文章發佈效率於一企業之知識分享平台★ 家庭智能管控之研究與實作
★ 開放式監控影像管理系統之搜尋機制設計及驗證★ 資料探勘應用於呆滯料預警機制之建立
★ 探討問題解決模式下的學習行為分析★ 資訊系統與電子簽核流程之總管理資訊系統
★ 製造執行系統應用於半導體機台停機通知分析處理★ Apple Pay支付於iOS平台上之研究與實作
★ 應用集群分析探究學習模式對學習成效之影響★ 應用序列探勘分析影片瀏覽模式對學習成效的影響
★ 一個以服務品質為基礎的網際服務選擇最佳化方法★ 維基百科知識推薦系統對於使用e-Portfolio的學習者滿意度調查
★ 學生的學習動機、網路自我效能與系統滿意度之探討-以e-Portfolio為例★ 藉由在第二人生內使用自動對話代理人來改善英文學習成效
★ 合作式資訊搜尋對於學生個人網路搜尋能力與策略之影響★ 數位註記對學習者在線上學習環境中反思等級之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-1以後開放)
摘要(中) 本研究旨在深入探討在程式設計學習中,使用流程圖提示是否優於文字描述提示,能夠提升學生的學習成效,為了達成這個目的,我們選擇使用基於GenAI的程式提示系統,其名為PyPrompter,並對此系統進行了優化。
首先透過GenAI結合Mermaid語法,將原本系統提供的文字描述提示改為直觀的流程圖提示,為了評估流程圖提示的品質,我們引入了標準化程式流程圖搭配最短路徑圖核(SCFC-SPGK)演算法來評估流程圖的品質。實驗結果顯示,使用流程圖提示的學生相較於使用文字提示的學生學習成效有顯著的提升。這些發現不僅為生成式人工智慧在程式設計教育的應用提供了具體案例,同時也強調了在學習工具中整合視覺化提示的重要性,來進一步提升學生的理解和應用能力。
本研究在實際應用中驗證了GenAI生成流程圖提示的有效性,這個結果為未來程式設計教育工具的開發和優化提供了有價值的參考,我們期許這項研究能夠推動程式設計教育的進一步發展,同時激發更多探討視覺化提示在學習工具中應用的相關研究。
摘要(英) This study aims to investigate whether the use of flowchart prompts is superior to text description prompts in programming education, leading to improved learning outcomes for students. To achieve this purpose, we chose to utilize the GenAI-based code prompting system named PyPrompter and optimized it.
Firstly, by integrating GenAI with Mermaid syntax, we changed the text description prompts originally provided by PyPrompter into intuitive flowchart prompts. To evaluate the quality of the flowchart prompts, we introduced the Standardized Code Flowchart with the Shortest Path Graph Kernel (SCFC-SPGK) algorithm to assess the quality of the flowcharts. Experimental results show that students who use flowchart prompts have significantly improved learning outcomes compared with students who use text prompts. These findings not only provide specific cases for the improvement of programming education, but also emphasize the importance of integrating visual prompts into learning tools to further enhance students′ understanding and application abilities.
This study has verified the effectiveness of GenAI in generating flowchart prompts in practical applications. This result provides a valuable reference for the development and optimization of future programming education tools. We hope that this research can promote the further development of programming education. It also stimulates more research on the application of visual cues in learning tools.
關鍵字(中) ★ 生成式人工智慧
★ 程式解題提示
★ 程式流程圖
★ 學習成效
★ 程式學習
關鍵字(英) ★ GenAI
★ Program prompts
★ Code Flowchart
★ Learning Outcome
★ Programming Learning
論文目次 摘要 i
Abstract ii
目錄 v
圖目錄 vii
表目錄 viii
1. 緒論 1
2. 文獻探討 3
2.1. 程式設計課程教學發展 3
2.2. 教育場合的程式解題提示策略 4
2.3. 程式克漏字發展 6
2.4. 程式流程圖發展 6
2.5. GPT的應用 8
3. 研究方法 10
3.1. 實驗架構 10
3.2. 課程介紹 11
3.2.1. 課程規劃 11
3.2.2. 線上學習系統 11
3.3. 流程圖評估 13
3.3.1. 標準化程式流程圖 15
3.3.2. 最短路徑圖核 16
3.4. PyPrompter提示素材生成 16
3.5. PyPrompter系統操作 20
3.5.1. 系統介面 20
3.5.2. 提示使用 21
4. 結果與討論 29
4.1. RQ1:GenAI產生的程式流程圖的品質是否與教師繪製的程式流程圖相似? 29
4.2. RQ2:使用程式流程圖提示是否比起文字描述提示更能提高學生的學習成效? 32
4.2.1. Python知識前測結果分析 32
4.2.2. 比較使用流程圖提示與文字描述提示對成績的影響 33
4.3. 討論 37
5. 總結 41
6. 未來研究與限制 42
7. 參考文獻 43
參考文獻 Adamson, V. (2023). Assessing the Effectiveness of ChatGPT in Generating Python Code.
Andrzejewska, M., & Stolińska, A. (2022). Do Structured Flowcharts Outperform Pseudocode? Evidence From Eye Movements. IEEE Access, 10, 132965-132975.
Antonucci, P., Estler, H.-C., Nikolic, D., Piccioni, M., & Meyer, B. (2015). An Incremental Hint System For Automated Programming Assignments. Proceedings of the 2015 ACM Conference on Innovation and Technology in Computer Science Education. https://doi.org/10.1145/2729094.2742607
Bisong, E., & Bisong, E. (2019). Google colaboratory. Building machine learning and deep learning models on google cloud platform: a comprehensive guide for beginners, 59-64. https://doi.org/10.1007/978-1-4842-4470-8_7
Borgwardt, K. M., & Kriegel, H.-P. (2005). Shortest-path kernels on graphs. Fifth IEEE International Conference on Data Mining (ICDM′05), 8 pp.-. https://doi.org/10.1109/ICDM.2005.132
Borji, A. (2023). A Categorical Archive of ChatGPT Failures. ArXiv, abs/2302.03494.
Busjahn, T., & Schulte, C. (2013). The use of code reading in teaching programming. European Conference on Modelling and Simulation,
Cabo, C. (2018). Effectiveness of Flowcharting as a Scaffolding Tool to Learn Python. Proceedings - Frontiers in Education Conference, FIE,
Chakraborty, S., Paul, S., & Masudul Ahsan, S. M. (2020). A Novel Approach to Rapidly Generate Document from Hand Drawn Flowcharts. 2020 IEEE Region 10 Symposium (TENSYMP), 702-705.
Chen, X. Y. (2015). Design and Implementation of Information Technology based Collaborative Learning Platform for College English Advising.
Chitrakar, N., & P.M, D. (2023). Frustration and its influences on Student Motivation and Academic Performance. International Journal of Scientific Research in Modern Science and Technology, 2, 01-09. https://doi.org/10.59828/ijsrmst.v2i11.158
Coelho, R. C., Marques, M. F. P., & de Oliveira, T. (2023). Mobile Learning Tools to Support in Teaching Programming Logic and Design: A Systematic Literature Review. Informatics in Education.
Dol, S. M. (2018). Animated Flowchart with Example Followed by Think-Pair-Share Activity for Teaching Algorithms of Engineering Courses. 2018 IEEE Tenth International Conference on Technology for Education (T4E), 186-189.
Elkherj, M., & Freund, Y. (2014). A system for sending the right hint at the right time. Proceedings of the first ACM conference on Learning @ scale conference. https://doi.org/10.1145/2556325.2567864
Firduas, C. A., & Sulandra, I. M. (2021). The students’ interest in a guided inquiry learning.
Funabiki, N., He, S., Kyaw, H. H. S., & Kao, W.-C. (2018). A Proposal of Code Correction Problem for Java Programming Learning Assistant System. Computational Intelligence in Security for Information Systems,
Gahankari, A., & Shrawankar, U. (2017). Hurdles For Designing Flowcharting Process.
Gamarra, M., Dominguez, A., Velazquez, J., & Páez, H. (2021). A gamification strategy in engineering education—A case study on motivation and engagement. Computer Applications in Engineering Education, 30, 472 - 482.
Harimurti, R., Ekohariadi, E., Munoto, M., & Winanti, E. T. (2019). Analysis of Programming Skills Concept in Developing Problem Solving Skills. Jurnal Pendidikan Teknologi dan Kejuruan. https://doi.org/10.21831/jptk.v25i1.22638
Hnin, H. W., & Zaw, K. K. (2020). Element Fill-in-Blank Problems in Python Programming Learning Assistant System. 2020 International Conference on Advanced Information Technologies (ICAIT), 88-93.
Kadar, R., Mahlan, S. B., Shamsuddin, M., Othman, J., & Wahab, N. A. (2022). Analysis of Factors Contributing to the Difficulties in Learning Computer Programming among Non-Computer Science Students. 2022 IEEE 12th Symposium on Computer Applications & Industrial Electronics (ISCAIE), 89-94.
KK, A., & KK, A. (2020). Continuous Feedback and Other Features. Azure DevOps for Web Developers: Streamlined Application Development Using Azure DevOps Features, 227-242. https://doi.org/10.1007/978-1-4842-6412-6_7
Kocaballi, A. B. (2023). Conversational AI-Powered Design: ChatGPT as Designer, User, and Product. ArXiv, abs/2302.07406.
Konecki, M. (2014). PROBLEMS IN PROGRAMMING EDUCATION AND MEANS OF THEIR IMPROVEMENT.
Kurnia, A., Lim, A., & Cheang, B. (2001). Online Judge. Computers & Education, 36(4), 299-315. https://doi.org/10.1016/S0360-1315(01)00018-5
Lazebna, N. (2021). ENGLISH-LANGUAGE BASIS OF PYTHON PROGRAMMING LANGUAGE. https://doi.org/https://doi.org/10.36550/2522-4077-2021-1-193-371-376
Li, G., Hammoud, H., Itani, H., Khizbullin, D., & Ghanem, B. (2023). CAMEL: Communicative Agents for "Mind" Exploration of Large Scale Language Model Society. ArXiv, abs/2303.17760.
Liu, Y., Thanh, L., Widyasari, R., Tantithamthavorn, C., Li, L., D Le, X. B., & Lo, D. (2023). Refining ChatGPT-Generated Code: Characterizing and Mitigating Code Quality Issues.
Lo, Y.-J., Lin, C.-C., Hou, L., Wu, J.-D., Feng, Y.-C., & Lee, G. C. (2013). Learning Beginning Programming with Cloud-Based Cloze Programming Practices. 2013 Learning and Teaching in Computing and Engineering, 235-236. https://doi.org/10.1109/LaTiCE.2013.18
Lu, X., Funabiki, N., Puspitasari, A. A., & Ueda, K. (2023). A Study of Phrase Fill-in-Blank Problem for Learning Basic C Programming. International Journal of Information and Education Technology.
Marwan, S., Lytle, N., Williams, J. J., & Price, T. W. (2019). The Impact of Adding Textual Explanations to Next-step Hints in a Novice Programming Environment. Proceedings of the 2019 ACM Conference on Innovation and Technology in Computer Science Education. https://doi.org/10.1145/3304221.3319759
Marwan, S., & Price, T. W. (2023). iSnap: Evolution and Evaluation of a Data-Driven Hint System for Block-Based Programming. IEEE Transactions on Learning Technologies, 16, 399-413. https://doi.org/10.1109/TLT.2022.3223577
Marwan, S., Williams, J. J., & Price, T. W. (2019). An Evaluation of the Impact of Automated Programming Hints on Performance and Learning. Proceedings of the 2019 ACM Conference on International Computing Education Research. https://doi.org/10.1145/3291279.3339420
McBroom, J., Koprinska, I., & Yacef, K. (2021). A Survey of Automated Programming Hint Generation: The HINTS Framework. ACM Comput. Surv., 54(8), Article 172. https://doi.org/10.1145/3469885
Mijwil, M. M., Aljanabi, M., & Ali, A. (2023). ChatGPT: Exploring the Role of Cybersecurity in the Protection of Medical Information. Mesopotamian Journal of Cyber Security.
Murali, R., Sukumar, R., Sanjana Gali, M., & Avudaiappan, V. (2023). Empowering Novice Programmers with Visual Problem Solving tools. Proceedings of the 16th Annual ACM India Compute Conference. https://doi.org/10.1145/3627217.3627232
Naveed, M. S., & Sarim, M. (2021). Analyzing the Effects of Error Messages Presentation on Debugging and Programming. Sukkur IBA Journal of Computing and Mathematical Sciences.
Ottosson, S., & Zaslavskyi, V. (2019). Visualize What to Be Coded before Programming. 2019 IEEE International Conference on Advanced Trends in Information Theory, ATIT 2019 - Proceedings,
Pan, Z., & Liu, M. (2022). The effects of learning analytics hint system in supporting students problem-solving. LAK22: 12th International Learning Analytics and Knowledge Conference. https://doi.org/10.1145/3506860.3506871
Patil, P. A., Mane, P. D., & Shinde, P. N. (2022). Incorporating Visualization Tools and Active Learning Approach for Programming Courses. Journal of Engineering Education Transformations. https://doi.org/10.16920/jeet/2022/v35is1/22014
Poldrack, R. A., Lu, T., & Beguš, G. (2023). AI-assisted coding: Experiments with GPT-4. ArXiv, abs/2304.13187. https://doi.org/10.48550/arXiv.2304.13187
Rahimi, E., Barendsen, E., & Henze, I. (2017). Identifying Students′ Misconceptions on Basic Algorithmic Concepts Through Flowchart Analysis. International Conference on Informatics in Secondary Schools,
Rahman, M., & Watanobe, Y. (2023). ChatGPT for Education and Research: Opportunities, Threats, and Strategies. https://doi.org/10.20944/preprints202303.0473.v1
Rana, S. (2023). AI and GPT for Management Scholars and Practitioners: Guidelines and Implications. FIIB Business Review, 12, 7 - 9.
Rathore, A. S., Sharma, A., & Massoudi, M. (2021). Personalized Engineering Education Model Based on Artificial Intelligence for Learning Programming. 2021 6th International Conference on Computing, Communication and Security (ICCCS), 1-10.
Ray, S., Herrera-Cámara, J., Runyon, M., & Hammond, T. (2019). Flow2Code: Transforming Hand-Drawn Flowcharts into Executable Code to Enhance Learning. In (pp. 79-103). https://doi.org/10.1007/978-3-030-17398-2_6
Sarab, M. M., Shahrokhi, M., & Tabatabaei, O. (2020). A Structured Approach for Display of the Most Practical Theories in ELT. Journal of Critical Studies in Language and Literature. https://doi.org/10.46809/jcsll.v1i3.27
Sengupta, A. (2009). Teaching Tip: CFC (Comment-First-Coding): A Simple yet Effective Method for Teaching Programming to Information Systems Students. J. Inf. Syst. Educ., 20, 393-400.
Taecharungroj, V. (2023). "What Can ChatGPT Do?" Analyzing Early Reactions to the Innovative AI Chatbot on Twitter. Big Data Cogn. Comput., 7, 35. https://doi.org/10.3390/bdcc7010035
Tasneem, S. (2012). Critical thinking in an introductory programming course. Journal of Computing Sciences in Colleges, 27, 81-83.
Wen, X., Yang, Z., Wang, Z., & Zhao, M. (2014). Exploration on Cultivating Students’ Abilities Based on Python Teaching Practice.
Yenigalla, L. K., Sinha, V., Sharif, B., & Crosby, M. E. (2016). How Novices Read Source Code in Introductory Courses on Programming: An Eye-Tracking Experiment. Interacción,
Yılmaz, R., & Karaoğlan Yılmaz, F. G. (2023). Augmented intelligence in programming learning: Examining student views on the use of ChatGPT for programming learning. Computers in Human Behavior: Artificial Humans, 1, 100005. https://doi.org/10.1016/j.chbah.2023.100005
Zhang, F., Li, G., Liu, C., & Song, Q. (2020). Flowchart-based cross-language source code similarity detection [Article]. Scientific Programming, 2020, Article 8835310. https://doi.org/10.1155/2020/8835310
Zhang, J.-H., Meng, B., Zou, L.-C., Zhu, Y., & Hwang, G.-j. (2021). Progressive flowchart development scaffolding to improve university students’ computational thinking and programming self-efficacy. Interactive Learning Environments, 31, 3792 - 3809.
Zougari, S., Tanana, M., & Lyhyaoui, A. (2016). Towards an automatic assessment system in introductory programming courses. 2016 International Conference on Electrical and Information Technologies (ICEIT), 496-499.
指導教授 楊鎮華(Stephen J.H. Yang) 審核日期 2024-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明