參考文獻 |
Ahmadzadeh, M., Elliman, D., & Higgins, C. (2005). An analysis of patterns of debugging among novice computer science students. Proceedings of the 10th Annual SIGCSE Conference on Innovation and Technology in Computer Science Education,
Ariza, C. (2009). The interrogator as critic: The turing test and the evaluation of generative music systems. Computer Music Journal, 33(2), 48-70.
Avella, J. T., Kebritchi, M., Nunn, S. G., & Kanai, T. (2016). Learning analytics methods, benefits, and challenges in higher education: A systematic literature review [Article]. Journal of Asynchronous Learning Network, 20(2). https://www.scopus.com/inward/record.uri?eid=2-s2.0-84975321434&partnerID=40&md5=85c3e4fbfb31f561497048bd7df36fa3
Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S., & Koller, D. (2014). Programming Pluralism: Using Learning Analytics to Detect Patterns in the Learning of Computer Programming [Article]. Journal of the Learning Sciences, 23(4), 561-599. https://doi.org/10.1080/10508406.2014.954750
Bsharat, S. M., Myrzakhan, A., & Shen, Z. (2023). Principled Instructions Are All You Need for Questioning LLaMA-1/2, GPT-3.5/4. arXiv preprint arXiv:2312.16171.
Bush, J. T., Pogany, P., Pickett, S. D., Barker, M., Baxter, A., Campos, S., Cooper, A. W., Hirst, D., Inglis, G., & Nadin, A. (2020). A turing test for molecular generators. Journal of Medicinal Chemistry, 63(20), 11964-11971.
Chen, B., Zhang, Z., Langrené, N., & Zhu, S. (2023). Unleashing the potential of prompt engineering in large language models: a comprehensive review. arXiv preprint arXiv:2310.14735.
Feuerriegel, S., Hartmann, J., Janiesch, C., & Zschech, P. (2024). Generative ai. Business & Information Systems Engineering, 66(1), 111-126.
Gan, W., Qi, Z., Wu, J., & Lin, J. C. W. (2023). Large Language Models in Education: Vision and Opportunities. Proceedings - 2023 IEEE International Conference on Big Data, BigData 2023,
Gozalo-Brizuela, R., & Garrido-Merchán, E. C. (2023). A survey of Generative AI Applications. arXiv preprint arXiv:2306.02781.
Hassan, N. F. B., Puteh, S. B., & Sanusi, A. B. M. (2019). Fleiss′s Kappa: Assessing the concept of technology enabled active learning (TEAL). Journal of Technical Education and Training, 11(1).
Hsiao, I. H., & Chung, C. Y. (2022). AI-infused Semantic Model to Enrich and Expand Programming Question Generation [Article]. Journal of Artificial Intelligence and Technology, 2(2), 47-54. https://doi.org/10.37965/jait.2022.0090
Hung, J. L., Hsu, Y. C., & Rice, K. (2012). Integrating data mining in program evaluation of K-12 online education [Article]. Educational Technology and Society, 15(3), 27-41. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84873854463&partnerID=40&md5=5214a0ca3591fd00931f1be11b6de0b1
Jauhiainen, J. S., & Guerra, A. G. (2023). Generative AI and ChatGPT in school Children’s education: evidence from a school lesson. Sustainability, 15(18), 14025.
McDermott, K. B., Agarwal, P. K., D′Antonio, L., Roediger Iii, H. L. I., & McDaniel, M. A. (2014). Both multiple-choice and short-answer quizzes enhance later exam performance in middle and high school classes [Article]. Journal of Experimental Psychology: Applied, 20(1), 3-21. https://doi.org/10.1037/xap0000004
Mello, R. F., Freitas, E., Pereira, F. D., Cabral, L., Tedesco, P., & Ramalho, G. (2023). Education in the age of Generative AI: Context and Recent Developments. arXiv preprint arXiv:2309.12332.
Moons, F., & Vandervieren, E. (2023). Measuring agreement among several raters classifying subjects into one-or-more (hierarchical) nominal categories. A generalisation of Fleiss′ kappa. arXiv preprint arXiv:2303.12502.
O′Toole, K., & Horvát, E.-Á. (2024). Extending Human Creativity with AI. Journal of Creativity, 100080.
Pereira, F. D., Oliveira, E. H. T., Oliveira, D. B. F., Cristea, A. I., Carvalho, L. S. G., Fonseca, S. C., Toda, A., & Isotani, S. (2020). Using learning analytics in the Amazonas: understanding students’ behaviour in introductory programming [Article]. British Journal of Educational Technology, 51(4), 955-972. https://doi.org/10.1111/bjet.12953
Rist, R. S. (1991). Knowledge creation and retrieval in program design: A comparison of novice and intermediate student programmers. Human-Computer Interaction, 6(1), 1-46.
Seljan, S. (2011). Translation technology as Challenge in education and business. Informatologia, 44(4), 279-286.
Song, D., Hong, H., & Oh, E. Y. (2021). Applying computational analysis of novice learners′ computer programming patterns to reveal self-regulated learning, computational thinking, and learning performance [Article]. Computers in Human Behavior, 120, Article 106746. https://doi.org/10.1016/j.chb.2021.106746
Thotad, P. (2023). Automatic Question Generator Using Natural Language Processing.
Turing, A. M. (2009). Computing machinery and intelligence. Springer.
van der Lee, C., Gatt, A., van Miltenburg, E., & Krahmer, E. (2021). Human evaluation of automatically generated text: Current trends and best practice guidelines. Computer Speech & Language, 67, 101151.
Velásquez-Henao, J. D., Franco-Cardona, C. J., & Cadavid-Higuita, L. (2023). Prompt Engineering: a methodology for optimizing interactions with AI-Language Models in the field of engineering. Dyna, 90(230), 9-17.
Yan, L., Sha, L., Zhao, L., Li, Y., Martinez‐Maldonado, R., Chen, G., Li, X., Jin, Y., & Gašević, D. (2024). Practical and ethical challenges of large language models in education: A systematic scoping review. British Journal of Educational Technology, 55(1), 90-112.
Yan, L., Sha, L., Zhao, L., Li, Y., Martinez‐Maldonado, R., Chen, G., Li, X., Jin, Y., & Gašević, D. (2024). Practical and ethical challenges of large language models in education: A systematic scoping review. British Journal of Educational Technology, 55(1), 90-112.
林文涵 (2023). 根據 SHAP 解釋模型提供基於Coding pattern干預以提升學習
成效. |