博碩士論文 111522102 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:180 、訪客IP:18.191.132.36
姓名 黃嘉慧(Chia-Hui Huang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 透過生成式AI提供個人化干預以提高學生學習成效
(Improving Student Learning Effectiveness Through Personalized Interventions Using Generative AI)
相關論文
★ 應用智慧分類法提升文章發佈效率於一企業之知識分享平台★ 家庭智能管控之研究與實作
★ 開放式監控影像管理系統之搜尋機制設計及驗證★ 資料探勘應用於呆滯料預警機制之建立
★ 探討問題解決模式下的學習行為分析★ 資訊系統與電子簽核流程之總管理資訊系統
★ 製造執行系統應用於半導體機台停機通知分析處理★ Apple Pay支付於iOS平台上之研究與實作
★ 應用集群分析探究學習模式對學習成效之影響★ 應用序列探勘分析影片瀏覽模式對學習成效的影響
★ 一個以服務品質為基礎的網際服務選擇最佳化方法★ 維基百科知識推薦系統對於使用e-Portfolio的學習者滿意度調查
★ 學生的學習動機、網路自我效能與系統滿意度之探討-以e-Portfolio為例★ 藉由在第二人生內使用自動對話代理人來改善英文學習成效
★ 合作式資訊搜尋對於學生個人網路搜尋能力與策略之影響★ 數位註記對學習者在線上學習環境中反思等級之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-1以後開放)
摘要(中) 本研究旨在探討如何透過生成式AI技術產生程式設計教育中的個人化程式行為回饋建議,使學生在課堂中時能夠比一般複習活動更能提高學習成效;同時探討透過生成式AI所產生的程式練習題是否可以達到人工出題的品質。
為了實現符合學生的個人化程式回饋建議,此回饋基於學生編碼習慣去識別出的Coding pattern來產生相對應的回饋,並在每次課堂結束後給予學生個人化回饋以及考前的干預輔導活動,結果顯示有個人化干預回饋的幫助,學生學習成效確實有效提升。
為了評估題目的可信度,將透過生成式AI產生的程式練習題與人工題目混合並請專業人士進行評估,將評估結果進行Fleiss Kappa,而透過Kappa係數去驗證其題目的信度與一致性。同時在課堂中將生成式AI產生的題目與人工題目混雜著給學生在課堂上做練習題,並在每週課堂結束後,請學生透過自己在做題時的感覺猜測哪些題目為生成式AI出題哪些為人工出題,圖靈測試結果表明生成式AI產生的題目與人工題目在學生感受下是無法分辨的。
以上研究皆表明,生成式AI的出現可以帶來許多的便利性及可能性,除了減輕老師的壓力,也能夠確實幫助學生提高學習成效,未來許多的應用必定會使用到大量的生成式AI。
摘要(英) This study aims to explore how Generative AI technology can enhance personalized programming behavior feedback in programming education, enabling students to achieve better learning outcomes during classes compared to traditional review activities. Additionally, the study investigates whether programming exercises generated by Generative AI can achieve the same quality as those created by humans.
To provide personalized programming feedback, this feedback is based on identifying coding patterns from students′ coding habits and generating corresponding feedback, which is given to students at the end of each class. The results show that the feedback helps improve students’ learning effectiveness.
To evaluate the reliability of the generated exercises, programming exercises produced by Generative AI will be assessed by professionals alongside manually created questions. The reliability and consistency of the questions will be validated using the Kappa coefficient of Fleiss′ Kappa. During classes, both AI-generated and human-created questions will be mixed for students to solve. At the end of each weekly class, students will be asked to guess which questions were generated by AI and which were created by humans. The Turing test results indicate that it is impossible to distinguish between AI-generated and human-created questions.
The above findings demonstrate that the advent of Generative AI brings many conveniences and possibilities. In addition to reducing teachers′ workload, it effectively helps students improve their learning outcomes. In the future, many applications will undoubtedly utilize extensive Generative AI.
關鍵字(中) ★ 生成式AI
★ 程式練習題
★ 干預輔導活動
★ Fleiss Kappa
★ 圖靈測試
關鍵字(英) ★ Generative AI
★ Programming Exercises
★ Intervention
★ Fleiss Kappa
★ Turing Test
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
1. 緒論 1
2. 文獻探討 2
2.1. 生成式AI 2
2.2. 提示工程 3
2.3. Fleiss Kappa 3
2.4. 圖靈測試 4
3. 系統開發 4
3.1. 產生個人化程式行為回饋建議 4
3.2. 產生程式練習題 10
4. 研究方法 12
4.1. 課程設計 12
4.2. 學習系統 14
4.3. 基於Coding patterns的個人化干預 16
4.3.1. 回饋建議 17
4.3.2. 程式行為趨勢分析 18
4.3.3. 作答時間分析 19
4.3.4. 錯誤類型分析 20
4.4. 評估準則&評估題目流程 20
4.5. 學生課後題目評估(圖靈測試) 22
5. 結果 23
5.1. 接受生成式AI產生的個人化程式行為回饋建議干預的學生能否比接受傳統複習活動的學生有更高的學習成績 23
5.2. 程式練習題信度比較 25
5.3. 生成式AI出題與人工出題的差異分析 27
5.4. 討論 29
6. 結論 30
7. 未來研究與限制 31
附錄 33
參考文獻 35
參考文獻 Ahmadzadeh, M., Elliman, D., & Higgins, C. (2005). An analysis of patterns of debugging among novice computer science students. Proceedings of the 10th Annual SIGCSE Conference on Innovation and Technology in Computer Science Education,
Ariza, C. (2009). The interrogator as critic: The turing test and the evaluation of generative music systems. Computer Music Journal, 33(2), 48-70.
Avella, J. T., Kebritchi, M., Nunn, S. G., & Kanai, T. (2016). Learning analytics methods, benefits, and challenges in higher education: A systematic literature review [Article]. Journal of Asynchronous Learning Network, 20(2). https://www.scopus.com/inward/record.uri?eid=2-s2.0-84975321434&partnerID=40&md5=85c3e4fbfb31f561497048bd7df36fa3
Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S., & Koller, D. (2014). Programming Pluralism: Using Learning Analytics to Detect Patterns in the Learning of Computer Programming [Article]. Journal of the Learning Sciences, 23(4), 561-599. https://doi.org/10.1080/10508406.2014.954750
Bsharat, S. M., Myrzakhan, A., & Shen, Z. (2023). Principled Instructions Are All You Need for Questioning LLaMA-1/2, GPT-3.5/4. arXiv preprint arXiv:2312.16171.
Bush, J. T., Pogany, P., Pickett, S. D., Barker, M., Baxter, A., Campos, S., Cooper, A. W., Hirst, D., Inglis, G., & Nadin, A. (2020). A turing test for molecular generators. Journal of Medicinal Chemistry, 63(20), 11964-11971.
Chen, B., Zhang, Z., Langrené, N., & Zhu, S. (2023). Unleashing the potential of prompt engineering in large language models: a comprehensive review. arXiv preprint arXiv:2310.14735.
Feuerriegel, S., Hartmann, J., Janiesch, C., & Zschech, P. (2024). Generative ai. Business & Information Systems Engineering, 66(1), 111-126.
Gan, W., Qi, Z., Wu, J., & Lin, J. C. W. (2023). Large Language Models in Education: Vision and Opportunities. Proceedings - 2023 IEEE International Conference on Big Data, BigData 2023,
Gozalo-Brizuela, R., & Garrido-Merchán, E. C. (2023). A survey of Generative AI Applications. arXiv preprint arXiv:2306.02781.
Hassan, N. F. B., Puteh, S. B., & Sanusi, A. B. M. (2019). Fleiss′s Kappa: Assessing the concept of technology enabled active learning (TEAL). Journal of Technical Education and Training, 11(1).
Hsiao, I. H., & Chung, C. Y. (2022). AI-infused Semantic Model to Enrich and Expand Programming Question Generation [Article]. Journal of Artificial Intelligence and Technology, 2(2), 47-54. https://doi.org/10.37965/jait.2022.0090
Hung, J. L., Hsu, Y. C., & Rice, K. (2012). Integrating data mining in program evaluation of K-12 online education [Article]. Educational Technology and Society, 15(3), 27-41. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84873854463&partnerID=40&md5=5214a0ca3591fd00931f1be11b6de0b1
Jauhiainen, J. S., & Guerra, A. G. (2023). Generative AI and ChatGPT in school Children’s education: evidence from a school lesson. Sustainability, 15(18), 14025.
McDermott, K. B., Agarwal, P. K., D′Antonio, L., Roediger Iii, H. L. I., & McDaniel, M. A. (2014). Both multiple-choice and short-answer quizzes enhance later exam performance in middle and high school classes [Article]. Journal of Experimental Psychology: Applied, 20(1), 3-21. https://doi.org/10.1037/xap0000004
Mello, R. F., Freitas, E., Pereira, F. D., Cabral, L., Tedesco, P., & Ramalho, G. (2023). Education in the age of Generative AI: Context and Recent Developments. arXiv preprint arXiv:2309.12332.
Moons, F., & Vandervieren, E. (2023). Measuring agreement among several raters classifying subjects into one-or-more (hierarchical) nominal categories. A generalisation of Fleiss′ kappa. arXiv preprint arXiv:2303.12502.
O′Toole, K., & Horvát, E.-Á. (2024). Extending Human Creativity with AI. Journal of Creativity, 100080.
Pereira, F. D., Oliveira, E. H. T., Oliveira, D. B. F., Cristea, A. I., Carvalho, L. S. G., Fonseca, S. C., Toda, A., & Isotani, S. (2020). Using learning analytics in the Amazonas: understanding students’ behaviour in introductory programming [Article]. British Journal of Educational Technology, 51(4), 955-972. https://doi.org/10.1111/bjet.12953
Rist, R. S. (1991). Knowledge creation and retrieval in program design: A comparison of novice and intermediate student programmers. Human-Computer Interaction, 6(1), 1-46.
Seljan, S. (2011). Translation technology as Challenge in education and business. Informatologia, 44(4), 279-286.
Song, D., Hong, H., & Oh, E. Y. (2021). Applying computational analysis of novice learners′ computer programming patterns to reveal self-regulated learning, computational thinking, and learning performance [Article]. Computers in Human Behavior, 120, Article 106746. https://doi.org/10.1016/j.chb.2021.106746
Thotad, P. (2023). Automatic Question Generator Using Natural Language Processing.
Turing, A. M. (2009). Computing machinery and intelligence. Springer.
van der Lee, C., Gatt, A., van Miltenburg, E., & Krahmer, E. (2021). Human evaluation of automatically generated text: Current trends and best practice guidelines. Computer Speech & Language, 67, 101151.
Velásquez-Henao, J. D., Franco-Cardona, C. J., & Cadavid-Higuita, L. (2023). Prompt Engineering: a methodology for optimizing interactions with AI-Language Models in the field of engineering. Dyna, 90(230), 9-17.
Yan, L., Sha, L., Zhao, L., Li, Y., Martinez‐Maldonado, R., Chen, G., Li, X., Jin, Y., & Gašević, D. (2024). Practical and ethical challenges of large language models in education: A systematic scoping review. British Journal of Educational Technology, 55(1), 90-112.
Yan, L., Sha, L., Zhao, L., Li, Y., Martinez‐Maldonado, R., Chen, G., Li, X., Jin, Y., & Gašević, D. (2024). Practical and ethical challenges of large language models in education: A systematic scoping review. British Journal of Educational Technology, 55(1), 90-112.
林文涵 (2023). 根據 SHAP 解釋模型提供基於Coding pattern干預以提升學習
成效.
指導教授 楊鎮華(Stephen J.H. Yang) 審核日期 2024-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明