博碩士論文 111522057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:119 、訪客IP:18.220.1.11
姓名 何佳馨(Jia-Xin He)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於超圖與知識圖譜協同的降噪會話推薦
(Denoising Session Recommendation Based on the Collaboration of Hypergraphs and Knowledge Graphs)
相關論文
★ 透過網頁瀏覽紀錄預測使用者之個人資訊與性格特質★ 透過矩陣分解之多目標預測方法預測使用者於特殊節日前之瀏覽行為變化
★ 動態多模型融合分析研究★ 擴展點擊流:分析點擊流中缺少的使用者行為
★ 關聯式學習:利用自動編碼器與目標傳遞法分解端到端倒傳遞演算法★ 融合多模型排序之點擊預測模型
★ 分析網路日誌中有意圖、無意圖及缺失之使用者行為★ 基於自注意力機制產生的無方向性序列編碼器使用同義詞與反義詞資訊調整詞向量
★ 探索深度學習或簡易學習模型在點擊率預測任務中的使用時機★ 空氣品質感測器之故障偵測--基於深度時空圖模型的異常偵測框架
★ 以同反義詞典調整的詞向量對下游自然語言任務影響之實證研究★ 結合時空資料的半監督模型並應用於PM2.5空污感測器的異常偵測
★ 藉由權重之梯度大小調整DropConnect的捨棄機率來訓練神經網路★ 使用圖神經網路偵測 PTT 的低活躍異常帳號
★ 針對個別使用者從其少量趨勢線樣本生成個人化趨勢線★ 基於雙變量及多變量貝他分布的兩個新型機率分群模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 基於會話的推薦系統(Session-based Recommendation,SBR)專注於預測短時間內的項目點擊。由於這種情況大多沒有使用者的歷史資訊,因此需要透過會話內隱含的用戶意圖進行推薦,除了用戶意圖外,也可以使用知識圖譜幫助項目學習額外的資訊,但現有的模型存在以下問題:1. 項目交互主導模型 2. 知識圖譜包含噪音 3.會話內部隱含噪音。由於以上問題,在本文中,我們提出了三個通道(知識圖譜通道、會話超圖通道以及會話線圖通道)分別用來捕捉知識圖譜、會話內部及會話外部的關聯訊息,在知識圖譜通道中,我們會自適應的刪除多餘的邊,幫助模型減少知識圖譜帶來的噪音,且知識圖譜形成的項目表示將與會話超圖通道形成的表示共同進行推薦預測,以緩解項目交互佔主導的問題,此外,我們還會為會話內的項目生成各自的注意力,用來進行會話的降噪。最後我們會透過會話產生的超圖通道和線圖通道最大化雙方的互訊息,來作為改善推薦任務的輔助任務。實驗結果顯示,在大多數據集中我們的方法可以提升推薦準確度。
摘要(英) Session-based recommendation systems need to capture implicit user intents from sessions, but existing models suffer from issues like item interaction dominance, noisy knowledge graphs, and session noise. We propose a multi-channel model with a knowledge graph channel, session hypergraph channel, and session line graph channel to capture relevant information from knowledge graphs, within sessions, and beyond sessions respectively. In the knowledge graph channel, we adapt ively remove redundant edges to reduce noise. Knowledge graph representations cooperate with hypergraph representations for prediction to alleviate item dominance. We also generate in-session attention for denoising. Finally, we maximize mutual information between the hypergraph and line graph channels as an auxiliary task. Experiments show our method improves recommendation accuracy on most datasets.
關鍵字(中) ★ 推薦系統
★ 知識圖譜
★ 超圖
★ 自監督學習
關鍵字(英) ★ Recommendation
★ Knowledge Graph
★ Hypergraph
★ Self-Supervised Learning
論文目次 摘要 v
Abstract vi
致謝 vii
目錄 viii
一、 緒論 1
二、 相關研究 5
2.1 基於會話的推薦系統 ................................................... 5
2.2 知識圖譜 .................................................................. 6
2.3 超圖研究 .................................................................. 6
2.4 自監督學習在推薦系統上的應用 .................................... 7
三、 研究模型及方法 9
3.1 符號和定義 ............................................................... 9
3.1.1 超圖(Hypergraph) .......................................... 9
3.1.2 線圖(Line graph) ........................................... 10
3.1.3 知識圖(Knowledge graph) ................................ 10
3.2 模型架構 .................................................................. 11
3.2.1 知識圖譜通道 ................................................... 12
3.2.2 超圖通道 ......................................................... 14
3.2.3 線圖通道 ......................................................... 15
3.2.4 模型預測和優化 ................................................ 19
四、 實驗結果與分析 23
4.1 數據集與前處理 ......................................................... 23
4.2 評估方法 .................................................................. 25
4.3 基線模型 .................................................................. 26
4.4 超參數設置 ............................................................... 27
4.5 實驗結果 .................................................................. 27
4.5.1 整體效能 ......................................................... 27
4.5.2 消融實驗 ......................................................... 29
4.5.3 超參數研究 ...................................................... 31
五、 總結 36
5.1 結論 ........................................................................ 36
5.2 未來展望 .................................................................. 37
參考文獻 38
附錄 A 實驗程式碼 41
參考文獻 [1] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative filtering recommendation algorithms,” in Proceedings of the 10th international conference on World Wide Web, 2001, pp. 285–295.
[2] L. Wu, C. Quan, C. Li, Q. Wang, B. Zheng, and X. Luo, “A context-aware user-item representation learning for item recommendation,” ACM Transactions on Information Systems (TOIS), vol. 37, no. 2, pp. 1–29, 2019.
[3] A. Rashed, S. Elsayed, and L. Schmidt-Thieme, “Context and attribute-aware sequential recommendation via cross-attention,” in Proceedings of the 16th ACM Conference on Recommender Systems, 2022, pp. 71–80.
[4] X. Wang, X. He, Y. Cao, M. Liu, and T.-S. Chua, “Kgat: Knowledge graph attention network for recommendation,” in Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, 2019, pp. 950–958.
[5] H. Wang, M. Zhao, X. Xie, W. Li, and M. Guo, “Knowledge graph convolutional networks for recommender systems,” in The world wide web conference, 2019, pp. 3307–3313.
[6] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based recommendations with recurrent neural networks,” arXiv preprint arXiv:1511.06939, 2015.
[7] C. Gao, Y. Zheng, N. Li, et al., “Graph neural networks for recommender systems: Challenges, methods, and directions,” arXiv preprint arXiv:2109.12843, vol. 1, pp. 46–58, 2021.
[8] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma, “Neural attentive session-based recommendation,” in Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, 2017, pp. 1419–1428.
[9] Q. Liu, Y. Zeng, R. Mokhosi, and H. Zhang, “Stamp: Short-term attention/memory priority model for session-based recommendation,” in Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, 2018, pp. 1831–1839.
[10] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555, 2014.
[11] X. Xia, H. Yin, J. Yu, Y. Shao, and L. Cui, “Self-supervised graph co-training for session-based recommendation,” in Proceedings of the 30th ACM International conference on information & knowledge management, 2021, pp. 2180–2190.
[12] A. Blum and T. Mitchell, “Combining labeled and unlabeled data with co-training,” in Proceedings of the eleventh annual conference on Computational learning theory, 1998, pp. 92–100.
[13] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing personalized markov chains for next-basket recommendation,” in Proceedings of the 19th international conference on World wide web, 2010, pp. 811–820.
[14] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan, “Session-based recommendation with graph neural networks,” in Proceedings of the AAAI conference on artificial intelligence, vol. 33, 2019, pp. 346–353.
[15] Z. Wang, W. Wei, G. Cong, X.-L. Li, X.-L. Mao, and M. Qiu, “Global context enhanced graph neural networks for session-based recommendation,” in Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval, 2020, pp. 169–178.
[16] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko, “Translating embeddings for modeling multi-relational data,” Advances in neural information processing systems, vol. 26, 2013.
[17] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and relation embeddings for knowledge graph completion,” in Proceedings of the AAAI conference on artificial intelligence, vol. 29, 2015.
[18] B. Hu, C. Shi, W. X. Zhao, and P. S. Yu, “Leveraging meta-path based context for top-n recommendation with a neural co-attention model,” in Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, 2018, pp. 1531–1540.
[19] H. Zhao, Q. Yao, J. Li, Y. Song, and D. L. Lee, “Meta-graph based recommendation fusion over heterogeneous information networks,” in Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, 2017, pp. 635–644.
[20] Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao, “Hypergraph neural networks,” in Proceedings of the AAAI conference on artificial intelligence, vol. 33, 2019, pp. 3558– 3565.
[21] N. Yadati, M. Nimishakavi, P. Yadav, V. Nitin, A. Louis, and P. Talukdar, “Hypergcn: A new method for training graph convolutional networks on hypergraphs,” Advances in neural information processing systems, vol. 32, 2019.
[22] Y. Li, C. Gao, H. Luo, D. Jin, and Y. Li, “Enhancing hypergraph neural networks with intent disentanglement for session-based recommendation,” in Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022, pp. 1997–2002.
[23] H. Wang, Y. Xu, C. Yang, et al., “Knowledge-adaptive contrastive learning for recommendation,” in Proceedings of the sixteenth ACM international conference on web search and data mining, 2023, pp. 535–543.
[24] D. Luo, W. Cheng, D. Xu, et al., “Parameterized explainer for graph neural network,” Advances in neural information processing systems, vol. 33, pp. 19 620– 19 631, 2020.
[25] C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribution: A continuous relaxation of discrete random variables,” arXiv preprint arXiv:1611.00712, 2016.
[26] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.
[27] X. Xia, H. Yin, J. Yu, Q. Wang, L. Cui, and X. Zhang, “Self-supervised hypergraph convolutional networks for session-based recommendation,” in Proceedings of the AAAI conference on artificial intelligence, vol. 35, 2021, pp. 4503–4511.
[28] Z. Pan, F. Cai, Y. Ling, and M. de Rijke, “Rethinking item importance in sessionbased recommendation,” in Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval, 2020, pp. 1837– 1840.
[29] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive predictive coding,” arXiv preprint arXiv:1807.03748, 2018.
[30] Tmall dataset, https://tianchi.aliyun.com/dataset/42, Accessed: 2023-08-17.
[31] Retailrocket dataset, https://www.kaggle.com/datasets/retailrocket/ecommercedataset, Accessed: 2024-03-18.
[32] J. Wang, K. Ding, Z. Zhu, and J. Caverlee, “Session-based recommendation with hypergraph attention networks,” in Proceedings of the 2021 SIAM international conference on data mining (SDM), SIAM, 2021, pp. 82–90.
指導教授 陳弘軒(Hung-Hsuan Chen) 審核日期 2024-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明