參考文獻 |
World Health Organization, “Cancer today.” Accessed: Mar. 27, 2023. [Online]. Available: https://gco.iarc.fr/today/data/factsheets/cancers/39-All-cancers-fact-sheet.pdf
[2] National Cancer Institution, “Cancer of the Lung and Bronchus - Cancer Stat Facts,” SEER. Accessed: Mar. 27, 2023. [Online]. Available: https://seer.cancer.gov/statfacts/html/lungb.html
[3] 衛生福利部統計處, “歷年統計,” 統計處. Accessed: Mar. 28, 2023. [Online]. Available: https://dep.mohw.gov.tw/DOS/lp-5069-113.html
[4] W. S, “Multiple primary malignant tumors. A survey of the literature and a statistical study,” Am J Cancer, vol. 16, pp. 1359–1414, 1932.
[5] M. Utada, Y. Ohno, M. Hori, and M. Soda, “Incidence of multiple primary cancers and interval between first and second primary cancers,” Cancer Sci., vol. 105, no. 7, pp. 890– 896, Jul. 2014, doi: 10.1111/cas.12433.
[6] L. B. Travis, “The Epidemiology of Second Primary Cancers,” Cancer Epidemiol. Biomarkers Prev., vol. 15, no. 11, pp. 2020–2026, Nov. 2006, doi: 10.1158/1055- 9965.EPI-06-0414.
[7] Q. Bi, K. E. Goodman, J. Kaminsky, and J. Lessler, “What is Machine Learning? A Primer for the Epidemiologist,” Am. J. Epidemiol., vol. 188, no. 12, pp. 2222–2239, Dec. 2019, doi: 10.1093/aje/kwz189.
[8] K. P. Murphy, “Machine learning - a probabilistic perspective,” presented at the Adaptive computation and machine learning series, 2012. Accessed: Apr. 21, 2024. [Online]. Available: https://www.semanticscholar.org/paper/Machine-learning-a-probabilistic- perspective-Murphy/360ca02e6f5a5e1af3dce4866a257aafc2d6d6f5
[9] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015, doi: 10.1038/nature14539.
[10] O. Baloglu, S. Q. Latifi, and A. Nazha, “What is machine learning?,” Arch. Dis. Child. - Educ. Pract. Ed., vol. 107, no. 5, pp. 386–388, Oct. 2022, doi: 10.1136/archdischild- 2020-319415.
[11] Y. Jeon and W. K. Lee, “Competing Risk Model in Survival Analysis,” Cardiovasc. Prev. Pharmacother., vol. 2, no. 3, pp. 77–84, Jul. 2020, doi: 10.36011/cpp.2020.2.e11.
[12] L. Ohno-Machado, “Modeling Medical Prognosis: Survival Analysis Techniques,” J. Biomed. Inform., vol. 34, no. 6, pp. 428–439, Dec. 2001, doi: 10.1006/jbin.2002.1038.
[13] P. C. Austin, D. S. Lee, and J. P. Fine, “Introduction to the Analysis of Survival Data in the Presence of Competing Risks,” Circulation, vol. 133, no. 6, pp. 601–609, Feb. 2016, doi: 10.1161/CIRCULATIONAHA.115.017719.
[14] P. Wang, Y. Li, and C. K. Reddy, “Machine Learning for Survival Analysis: A Survey,” ACM Comput. Surv., vol. 51, no. 6, p. 110:1-110:36, Feb. 2019, doi: 10.1145/3214306.
[15] M. Kono et al., “Incidence of Second Malignancy after Successful Treatment of Limited- Stage Small–Cell Lung Cancer and Its Effects on Survival,” J. Thorac. Oncol., vol. 12, no. 11, pp. 1696–1703, Nov. 2017, doi: 10.1016/j.jtho.2017.07.030.
[16] “Smoking history predicts for increased risk of second primary lung cancer: A comprehensive analysis - Boyle - 2015 - Cancer - Wiley Online Library.” Accessed: Apr. 22, 2024. [Online]. Available: https://acsjournals.onlinelibrary.wiley.com/doi/full/10.1002/cncr.29095
[17] M. Eberl, L. F. Tanaka, K. Kraywinkel, and S. J. Klug, “Incidence of Smoking-Related Second Primary Cancers After Lung Cancer in Germany: An Analysis of Nationwide Cancer Registry Data,” J. Thorac. Oncol., vol. 17, no. 3, pp. 388–398, Mar. 2022, doi: 10.1016/j.jtho.2021.11.016.
[18] I. Kononenko, “Machine learning for medical diagnosis: history, state of the art and perspective,” Artif. Intell. Med., vol. 23, no. 1, pp. 89–109, Aug. 2001, doi: 10.1016/S0933-3657(01)00077-X.
[19] K. Monterrubio-Gómez, N. Constantine-Cooke, and C. A. Vallejos, “A review on competing risks methods for survival analysis,” Dec. 09, 2022, arXiv: arXiv:2212.05157. Accessed: Mar. 01, 2024. [Online]. Available: http://arxiv.org/abs/2212.05157
[20] C.-C. Chang and S.-H. Chen, “Developing a Novel Machine Learning-Based Classification Scheme for Predicting SPCs in Breast Cancer Survivors,” Front. Genet., vol. 10, Sep. 2019, doi: 10.3389/fgene.2019.00848.
[21] W.-C. Ting, Y.-C. A. Lu, W.-C. Ho, C. Cheewakriangkrai, H.-R. Chang, and C.-L. Lin, “Machine Learning in Prediction of Second Primary Cancer and Recurrence in Colorectal Cancer,” Int. J. Med. Sci., vol. 17, no. 3, pp. 280–291, Jan. 2020, doi: 10.7150/ijms.37134.
[22] R. Wu et al., “Evaluation of machine learning algorithms for the prognosis of breast cancer from the Surveillance, Epidemiology, and End Results database,” PLOS ONE, vol. 18, no. 1, p. e0280340, Jan. 2023, doi: 10.1371/journal.pone.0280340.
[23] S. Hindocha et al., “A comparison of machine learning methods for predicting recurrence and death after curative-intent radiotherapy for non-small cell lung cancer: Development and validation of multivariable clinical prediction models,” eBioMedicine, vol. 77, Mar. 2022, doi: 10.1016/j.ebiom.2022.103911.
[24] B. George, S. Seals, and I. Aban, “Survival analysis and regression models,” J. Nucl. Cardiol., vol. 21, no. 4, pp. 686–694, Aug. 2014, doi: 10.1007/s12350-014-9908-2.
[25] E. Leoncini et al., “Tumour stage and gender predict recurrence and second primary malignancies in head and neck cancer: a multicentre study within the INHANCE consortium,” Eur. J. Epidemiol., vol. 33, no. 12, pp. 1205–1218, Dec. 2018, doi: 10.1007/s10654-018-0409-5.
[26] J. Xiao et al., “The Application and Comparison of Machine Learning Models for the Prediction of Breast Cancer Prognosis: Retrospective Cohort Study,” JMIR Med. Inform.,vol. 10, no. 2, p. e33440, Feb. 2022, doi: 10.2196/33440.
[27] D. Wang et al., “Development and validation of machine learning models for predicting
prognosis and guiding individualized postoperative chemotherapy: A real-world study of distal cholangiocarcinoma,” Front. Oncol., vol. 13, p. 1106029, 2023, doi: 10.3389/fonc.2023.1106029.
[28] X. Yang, H. Qiu, L. Wang, and X. Wang, “Predicting Colorectal Cancer Survival Using Time-to-Event Machine Learning: Retrospective Cohort Study,” J. Med. Internet Res., vol. 25, no. 1, p. e44417, Oct. 2023, doi: 10.2196/44417.
[29] R. Li, Y. Zhang, B. Ma, K. Tan, H. S. Lynn, and Z. Wu, “Survival analysis of second primary malignancies after cervical cancer using a competing risk model: implications for prevention and surveillance,” Ann. Transl. Med., vol. 9, no. 3, p. 239, Feb. 2021, doi: 10.21037/atm-20-2003.
[30] S. M. de Boer et al., “Adjuvant chemoradiotherapy versus radiotherapy alone in women with high-risk endometrial cancer (PORTEC-3): patterns of recurrence and post-hoc survival analysis of a randomised phase 3 trial,” Lancet Oncol., vol. 20, no. 9, pp. 1273– 1285, Sep. 2019, doi: 10.1016/S1470-2045(19)30395-X.
[31] C. G. Rusthoven et al., “Evaluation of First-line Radiosurgery vs Whole-Brain Radiotherapy for Small Cell Lung Cancer Brain Metastases: The FIRE-SCLC Cohort Study,” JAMA Oncol., vol. 6, no. 7, pp. 1028–1037, Jul. 2020, doi: 10.1001/jamaoncol.2020.1271.
[32] G. Kantidakis, H. Putter, S. Litière, and M. Fiocco, “Statistical models versus machine learning for competing risks: development and validation of prognostic models,” BMC Med. Res. Methodol., vol. 23, no. 1, p. 51, Feb. 2023, doi: 10.1186/s12874-023-01866-z.
[33] C.-J. Chiang, S.-L. You, C.-J. Chen, Y.-W. Yang, W.-C. Lo, and M.-S. Lai, “Quality assessment and improvement of nationwide cancer registration system in Taiwan: a review,” Jpn. J. Clin. Oncol., vol. 45, no. 3, pp. 291–296, Mar. 2015, doi: 10.1093/jjco/hyu211.
[34] C.-W. Kao et al., “Accuracy of long-form data in the Taiwan cancer registry,” J. Formos. Med. Assoc., vol. 120, no. 11, pp. 2037–2041, Nov. 2021, doi: 10.1016/j.jfma.2021.04.022.
[35] S. Pölsterl, “scikit-survival: a library for time-to-event analysis built on top of scikit- learn,” J. Mach. Learn. Res., vol. 21, no. 1, p. 212:8747-212:8752, Jan. 2020.
[36] H. Kvamme, Ø. Borgan, and I. Scheel, “Time-to-Event Prediction with Neural Networks and Cox Regression,” J. Mach. Learn. Res., vol. 20, no. 129, pp. 1–30, 2019.
[37] D. R. Cox, “Regression Models and Life-Tables,” J. R. Stat. Soc. Ser. B Methodol., vol. 34, no. 2, pp. 187–202, 1972, doi: 10.1111/j.2517-6161.1972.tb00899.x.
[38] S. Cygu, J. Dushoff, and B. M. Bolker, “pcoxtime: Penalized Cox Proportional Hazard Model for Time-dependent Covariates,” Jun. 09, 2021, arXiv: arXiv:2102.02297. doi: 10.48550/arXiv.2102.02297.
[39] H. Ishwaran, U. B. Kogalur, E. H. Blackstone, and M. S. Lauer, “Random survival forests,” Ann. Appl. Stat., vol. 2, no. 3, pp. 841–860, Sep. 2008, doi: 10.1214/08- AOAS169.
[40] G. Ridgeway, “The State of Boosting,” Comput. Sci. Stat., no. 31, pp. 172–181, 1999. [41] S. Pölsterl, N. Navab, and A. Katouzian, “Fast Training of Support Vector Machines for
Survival Analysis,” in Machine Learning and Knowledge Discovery in Databases, vol. 9285, A. Appice, P. P. Rodrigues, V. Santos Costa, J. Gama, A. Jorge, and C. Soares, Eds., in Lecture Notes in Computer Science, vol. 9285. , Cham: Springer International Publishing, 2015, pp. 243–259. doi: 10.1007/978-3-319-23525-7_15.
[42] J. L. Katzman, U. Shaham, A. Cloninger, J. Bates, T. Jiang, and Y. Kluger, “DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network,” BMC Med. Res. Methodol., vol. 18, no. 1, p. 24, Feb. 2018, doi: 10.1186/s12874-018-0482-1.
[43] T. A. G. Kattan Michael W., Medical Risk Prediction Models: With Ties to Machine Learning. New York: Chapman and Hall/CRC, 2021. doi: 10.1201/9781138384484.
[44] H. Ishwaran and U. B. Kogalur, randomForestSRC: Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC). (Dec. 06, 2023). Accessed: Mar. 01, 2024. [Online]. Available: https://cran.r- project.org/web/packages/randomForestSRC/index.html
[45] B. Ripley and W. Venables, nnet: Feed-Forward Neural Networks and Multinomial Log- Linear Models. (May 03, 2023). Accessed: Mar. 01, 2024. [Online]. Available: https://cran.r-project.org/web/packages/nnet/index.html
[46] P. C. Austin and J. P. Fine, “Practical recommendations for reporting Fine‐Gray model analyses for competing risk data,” Stat. Med., vol. 36, no. 27, pp. 4391–4400, Nov. 2017, doi: 10.1002/sim.7501.
[47] J. P. Fine and R. J. Gray, “A Proportional Hazards Model for the Subdistribution of a Competing Risk,” J. Am. Stat. Assoc., vol. 94, no. 446, pp. 496–509, Jun. 1999, doi: 10.1080/01621459.1999.10474144.
[48] H. Ishwaran, T. A. Gerds, U. B. Kogalur, R. D. Moore, S. J. Gange, and B. M. Lau, “Random survival forests for competing risks,” Biostatistics, vol. 15, no. 4, pp. 757–773, Oct. 2014, doi: 10.1093/biostatistics/kxu010.
[49] R. J. Gray, “A Class of K-Sample Tests for Comparing the Cumulative Incidence of a Competing Risk,” Ann. Stat., vol. 16, no. 3, Sep. 1988, doi: 10.1214/aos/1176350951.
[50] E. M. Biganzoli, P. Boracchi, F. Ambrogi, and E. Marubini, “Artificial neural network for the joint modelling of discrete cause-specific hazards,” Artif. Intell. Med., vol. 37, no. 2, pp. 119–130, Jun. 2006, doi: 10.1016/j.artmed.2006.01.004.
[51] E. Biganzoli, P. Boracchi, L. Mariani, and E. Marubini, “Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach,” Stat. Med., vol. 17, no. 10, pp. 1169–1186, 1998, doi: 10.1002/(SICI)1097-0258(19980530)17:10<1169::AID-SIM796>3.0.CO;2-D.
[52] H. Uno, T. Cai, L. Tian, and L. J. Wei, “Evaluating Prediction Rules for t -Year Survivors
With Censored Regression Models,” J. Am. Stat. Assoc., vol. 102, no. 478, pp. 527–537,
Jun. 2007, doi: 10.1198/016214507000000149.
[53] H. Hung and C.-T. Chiang, “Estimation methods for time-dependent AUC models with
survival data,” Can. J. Stat., vol. 38, no. 1, pp. 8–26, 2010, doi: 10.1002/cjs.10046. [54] P. J. Heagerty and Y. Zheng, “Survival Model Predictive Accuracy and ROC Curves,”
Biometrics, vol. 61, no. 1, pp. 92–105, 2005, doi: 10.1111/j.0006-341X.2005.030814.x. [55] J. Lambert and S. Chevret, “Summary measure of discrimination in survival models
based on cumulative/dynamic time-dependent ROC curves,” Stat. Methods Med. Res.,
vol. 25, no. 5, pp. 2088–2102, Oct. 2016, doi: 10.1177/0962280213515571.
[56] E. L. Kaplan and P. Meier, “Nonparametric Estimation from Incomplete Observations,”
J. Am. Stat. Assoc., vol. 53, no. 282, pp. 457–481, Jun. 1958, doi:
10.1080/01621459.1958.10501452.
[57] P. Blanche, C. Proust-Lima, L. Loubère, C. Berr, J.-F. Dartigues, and H. Jacqmin-Gadda,
“Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time-to-event in presence of censoring and competing risks,” Biometrics, vol. 71, no. 1, pp. 102–113, 2015, doi: 10.1111/biom.12232.
[58] O. O. Aalen and S. Johansen, “An Empirical Transition Matrix for Non-Homogeneous Markov Chains Based on Censored Observations,” Scand. J. Stat., vol. 5, no. 3, pp. 141– 150, 1978.
[59] E. Graf, C. Schmoor, W. Sauerbrei, and M. Schumacher, “Assessment and comparison of prognostic classification schemes for survival data,” Stat. Med., vol. 18, no. 17–18, pp. 2529–2545, 1999, doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID- SIM274>3.0.CO;2-5.
[60] R. Schoop, J. Beyersmann, M. Schumacher, and H. Binder, “Quantifying the predictive accuracy of time-to-event models in the presence of competing risks,” Biom. J., vol. 53, no. 1, pp. 88–112, 2011, doi: 10.1002/bimj.201000073.
[61] E. Longato, M. Vettoretti, and B. Di Camillo, “A practical perspective on the concordance index for the evaluation and selection of prognostic time-to-event models,” J. Biomed. Inform., vol. 108, p. 103496, Aug. 2020, doi: 10.1016/j.jbi.2020.103496.
[62] T. J. Pollard, A. E. W. Johnson, J. D. Raffa, and R. G. Mark, “tableone: An open source Python package for producing summary statistics for research papers,” JAMIA Open, vol. 1, no. 1, pp. 26–31, Jul. 2018, doi: 10.1093/jamiaopen/ooy012.
[63] C. Davidson-Pilon, “lifelines: survival analysis in Python,” J. Open Source Softw., vol. 4, no. 40, p. 1317, Aug. 2019, doi: 10.21105/joss.01317.
[64] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” Mach. Learn. PYTHON.
[65] H. T. Kim, “Cumulative Incidence in Competing Risks Data and Competing Risks Regression Analysis,” Clin. Cancer Res., vol. 13, no. 2, pp. 559–565, Jan. 2007, doi:10.1158/1078-0432.CCR-06-1210.
[66] J. J. Dignam and M. N. Kocherginsky, “Choice and Interpretation of Statistical Tests
Used When Competing Risks Are Present,” J. Clin. Oncol., vol. 26, no. 24, pp. 4027–
4034, Aug. 2008, doi: 10.1200/JCO.2007.12.9866.
[67] S. D. Berry, L. Ngo, E. J. Samelson, and D. P. Kiel, “Competing Risk of Death: An
Important Consideration in Studies of Older Adults,” J. Am. Geriatr. Soc., vol. 58, no. 4,
pp. 783–787, 2010, doi: 10.1111/j.1532-5415.2010.02767.x.
[68] M. T. Koller, H. Raatz, E. W. Steyerberg, and M. Wolbers, “Competing risks and the
clinical community: irrelevance or ignorance?,” Stat. Med., vol. 31, no. 11–12, pp. 1089–
1097, May 2012, doi: 10.1002/sim.4384.
[69] K. C. Cain et al., “Bias Due to Left Truncation and Left Censoring in Longitudinal
Studies of Developmental and Disease Processes,” Am. J. Epidemiol., vol. 173, no. 9, pp.
1078–1084, May 2011, doi: 10.1093/aje/kwq481.
[70] Y. Jin, T. G. N. Ton, D. Incerti, and S. Hu, “Left truncation in linked data: A practical
guide to understanding left truncation and applying it using SAS and R,” Pharm. Stat.,
vol. 22, no. 1, pp. 194–204, 2023, doi: 10.1002/pst.2257.
[71] Z. Gong, P. Zhong, and W. Hu, “Diversity in Machine Learning,” IEEE Access, vol. 7,
pp. 64323–64350, 2019, doi: 10.1109/ACCESS.2019.2917620.
[72] J. Wang et al., “Testing the generalizability and effectiveness of deep learning models
among clinics: sperm detection as a pilot study,” Reprod. Biol. Endocrinol., vol. 22, no. 1, p. 59, May 2024, doi: 10.1186/s12958-024-01232-8. |