參考文獻 |
Bach, S.H., Sanh, V., Yong, Z.-X., Webson, A., Raffel, C., Nayak, N.V., Sharma, A., Kim, T., Bari, M.S., Fevry, T., Alyafeai, Z., Dey, M., Santilli, A., Sun, Z., Ben-David, S., Xu, C., Chhablani, G., Wang, H., Fries, J.A., Al-shaibani, M.S., Sharma, S., Thakker, U., Almubarak, K., Tang, X., Radev, D., Jiang, M.T.-J., Rush, A.M., 2022. PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts.
Ben-David, E., Oved, N., Reichart, R., 2022. PADA: Example-based Prompt Learning for on-the-fly Adaptation to Unseen Domains. https://doi.org/10.48550/arXiv.2102.12206
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D., 2020. Language Models are Few-Shot Learners, in: Advances in Neural Information Processing Systems. Curran Associates, Inc., pp. 1877–1901.
Chen, G., Qian, Y., Wang, B., Li, L., 2023. MPrompt: Exploring Multi-level Prompt Tuning for Machine Reading Comprehension.
Chen, L., Chen, J., Goldstein, T., Huang, H., Zhou, T., 2023. InstructZero: Efficient Instruction Optimization for Black-Box Large Language Models. https://doi.org/10.48550/arXiv.2306.03082
Chiang, W.-L., Zhuohan, L., Zi, L., Ying, S., Zhanghao, W., 2023. Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality | LMSYS Org [WWW Document]. URL https://lmsys.org/blog/2023-03-30-vicuna
Christiano, P.F., Leike, J., Brown, T., Martic, M., Legg, S., Amodei, D., 2017. Deep Reinforcement Learning from Human Preferences, in: Advances in Neural Information Processing Systems. Curran Associates, Inc.
Chung, H.W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., Li, Y., Wang, X., Dehghani, M., Brahma, S., Webson, A., Gu, S.S., Dai, Z., Suzgun, M., Chen, X., Chowdhery, A., Castro-Ros, A., Pellat, M., Robinson, K., Valter, D., Narang, S., Mishra, G., Yu, A., Zhao, V., Huang, Y., Dai, A., Yu, H., Petrov, S., Chi, E.H., Dean, J., Devlin, J., Roberts, A., Zhou, D., Le, Q.V., Wei, J., 2022. Scaling Instruction-Finetuned Language Models. https://doi.org/10.48550/arXiv.2210.11416
Conover, M., Hayes, M., Mathur, A., 2023. Free Dolly: Introducing the World’s First Truly Open Instruction-Tuned LLM [WWW Document]. URL https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
Deng, M., Wang, J., Hsieh, C.-P., Wang, Y., Guo, H., Shu, T., Song, M., Xing, E., Hu, Z., 2022. RLPrompt: Optimizing Discrete Text Prompts with Reinforcement Learning, in: Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Presented at the EMNLP 2022, Association for Computational Linguistics, Abu Dhabi, United Arab Emirates, pp. 3369–3391.
Devlin, J., Chang, M.-W., Lee, K., Toutanova, K., 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv181004805 Cs.
Diao, S., Huang, Z., Xu, R., Li, X., Lin, Y., Zhou, X., Zhang, T., 2023. Black-box Prompt Learning for Pre-trained Language Models. https://doi.org/10.48550/arXiv.2201.08531
Efrat, A., Levy, O., 2020. The Turking Test: Can Language Models Understand Instructions? https://doi.org/10.48550/arXiv.2010.11982
Fedus, W., Zoph, B., Shazeer, N., 2022. Switch transformers: scaling to trillion parameter models with simple and efficient sparsity. J Mach Learn Res 23, 120:5232-120:5270.
Fuzhao, X., 2024. Instruction in the wild: A user-based instruction dataset.
Gao, T., Fisch, A., Chen, D., 2021. Making Pre-trained Language Models Better Few-shot Learners, in: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Presented at the ACL-IJCNLP 2021, Association for Computational Linguistics, Online, pp. 3816–3830. https://doi.org/10.18653/v1/2021.acl-long.295
Gemma Team, Mesnard, T., Hardin, C., Dadashi, R., Bhupatiraju, S., Pathak, S., Sifre, L., Rivière, M., Kale, M.S., Love, J., Tafti, P., Hussenot, L., Sessa, P.G., Chowdhery, A., Roberts, A., Barua, A., Botev, A., Castro-Ros, A., Slone, A., Héliou, A., Tacchetti, A., Bulanova, A., Paterson, A., Tsai, B., Shahriari, B., Lan, C.L., Choquette-Choo, C.A., Crepy, C., Cer, D., Ippolito, D., Reid, D., Buchatskaya, E., Ni, E., Noland, E., Yan, G., Tucker, G., Muraru, G.-C., Rozhdestvenskiy, G., Michalewski, H., Tenney, I., Grishchenko, I., Austin, J., Keeling, J., Labanowski, J., Lespiau, J.-B., Stanway, J., Brennan, J., Chen, J., Ferret, J., Chiu, J., Mao-Jones, J., Lee, K., Yu, K., Millican, K., Sjoesund, L.L., Lee, L., Dixon, L., Reid, M., Mikuła, M., Wirth, M., Sharman, M., Chinaev, N., Thain, N., Bachem, O., Chang, O., Wahltinez, O., Bailey, P., Michel, P., Yotov, P., Chaabouni, R., Comanescu, R., Jana, R., Anil, R., McIlroy, R., Liu, R., Mullins, R., Smith, S.L., Borgeaud, S., Girgin, S., Douglas, S., Pandya, S., Shakeri, S., De, S., Klimenko, T., Hennigan, T., Feinberg, V., Stokowiec, W., Chen, Y., Ahmed, Z., Gong, Z., Warkentin, T., Peran, L., Giang, M., Farabet, C., Vinyals, O., Dean, J., Kavukcuoglu, K., Hassabis, D., Ghahramani, Z., Eck, D., Barral, J., Pereira, F., Collins, E., Joulin, A., Fiedel, N., Senter, E., Andreev, A., Kenealy, K., 2024. Gemma: Open Models Based on Gemini Research and Technology. https://doi.org/10.48550/arXiv.2403.08295
Gonen, H., Iyer, S., Blevins, T., Smith, N.A., Zettlemoyer, L., 2022. Demystifying Prompts in Language Models via Perplexity Estimation. https://doi.org/10.48550/arXiv.2212.04037
Gu, J., Zhao, H., Xu, H., Nie, L., Mei, H., Yin, W., 2023. Robustness of Learning from Task Instructions, in: Rogers, A., Boyd-Graber, J., Okazaki, N. (Eds.), Findings of the Association for Computational Linguistics: ACL 2023. Presented at the Findings 2023, Association for Computational Linguistics, Toronto, Canada, pp. 13935–13948. https://doi.org/10.18653/v1/2023.findings-acl.875
Haviv, A., Berant, J., Globerson, A., 2021. BERTese: Learning to Speak to BERT, in: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. Presented at the EACL 2021, Association for Computational Linguistics, Online, pp. 3618–3623. https://doi.org/10.18653/v1/2021.eacl-main.316
Honovich, O., Scialom, T., Levy, O., Schick, T., 2023a. Unnatural Instructions: Tuning Language Models with (Almost) No Human Labor, in: Rogers, A., Boyd-Graber, J., Okazaki, N. (Eds.), Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Presented at the ACL 2023, Association for Computational Linguistics, Toronto, Canada, pp. 14409–14428. https://doi.org/10.18653/v1/2023.acl-long.806
Honovich, O., Shaham, U., Bowman, S.R., Levy, O., 2023b. Instruction Induction: From Few Examples to Natural Language Task Descriptions, in: Rogers, A., Boyd-Graber, J., Okazaki, N. (Eds.), Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Presented at the ACL 2023, Association for Computational Linguistics, Toronto, Canada, pp. 1935–1952. https://doi.org/10.18653/v1/2023.acl-long.108
Iyer, S., Lin, X.V., Pasunuru, R., Mihaylov, T., Simig, D., Yu, P., Shuster, K., Wang, T., Liu, Q., Koura, P.S., Li, X., O’Horo, B., Pereyra, G., Wang, J., Dewan, C., Celikyilmaz, A., Zettlemoyer, L., Stoyanov, V., 2023. OPT-IML: Scaling Language Model Instruction Meta Learning through the Lens of Generalization. https://doi.org/10.48550/arXiv.2212.12017
Jang, J., Ye, S., Seo, M., 2022. Can Large Language Models Truly Understand Prompts? A Case Study with Negated Prompts. https://doi.org/10.48550/arXiv.2209.12711
Jiang, Y., Yang, Hao, Lin, J., Zhao, H., Yang, A., Zhou, C., Yang, Hongxia, Yang, Z., Cui, B., 2022. Instance-wise Prompt Tuning for Pretrained Language Models. https://doi.org/10.48550/arXiv.2206.01958
Jiang, Z., Xu, F.F., Araki, J., Neubig, G., 2020. How Can We Know What Language Models Know? Trans. Assoc. Comput. Linguist. 8, 423–438. https://doi.org/10.1162/tacl_a_00324
Jin, F., Lu, J., Zhang, J., Zong, C., 2022. Instance-aware Prompt Learning for Language Understanding and Generation.
Khashabi, D., Lyu, X., Min, S., Qin, L., Richardson, K., Welleck, S., Hajishirzi, H., Khot, T., Sabharwal, A., Singh, S., Choi, Y., 2022. Prompt Waywardness: The Curious Case of Discretized Interpretation of Continuous Prompts, in: Carpuat, M., de Marneffe, M.-C., Meza Ruiz, I.V. (Eds.), Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Presented at the NAACL-HLT 2022, Association for Computational Linguistics, Seattle, United States, pp. 3631–3643. https://doi.org/10.18653/v1/2022.naacl-main.266
Kung, P.-N., Peng, N., 2023. Do Models Really Learn to Follow Instructions? An Empirical Study of Instruction Tuning, in: Rogers, A., Boyd-Graber, J., Okazaki, N. (Eds.), Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Presented at the ACL 2023, Association for Computational Linguistics, Toronto, Canada, pp. 1317–1328. https://doi.org/10.18653/v1/2023.acl-short.113
Lester, B., Al-Rfou, R., Constant, N., 2021. The Power of Scale for Parameter-Efficient Prompt Tuning, in: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Presented at the EMNLP 2021, Association for Computational Linguistics, Online and Punta Cana, Dominican Republic, pp. 3045–3059. https://doi.org/10.18653/v1/2021.emnlp-main.243
Li, H., Yang, L., Li, L., Xu, C., Xia, S.-T., Yuan, C., 2022. PTS: A Prompt-based Teacher-Student Network for Weakly Supervised Aspect Detection, in: 2022 International Joint Conference on Neural Networks (IJCNN). Presented at the 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. https://doi.org/10.1109/IJCNN55064.2022.9892147
Li, X.L., Liang, P., 2021. Prefix-Tuning: Optimizing Continuous Prompts for Generation, in: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Presented at the ACL-IJCNLP 2021, Association for Computational Linguistics, Online, pp. 4582–4597. https://doi.org/10.18653/v1/2021.acl-long.353
Lin, C.-Y., 2004. ROUGE: A Package for Automatic Evaluation of Summaries, in: Text Summarization Branches Out. Association for Computational Linguistics, Barcelona, Spain, pp. 74–81.
Liu, J., Chen, T., Liang, Z., Jiang, H., Xiao, Y., Wei, F., Qian, Y., Hao, Z., Han, B., 2023. Hierarchical Prompt Tuning for Few-Shot Multi-Task Learning, in: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, CIKM ’23. Association for Computing Machinery, New York, NY, USA, pp. 1556–1565. https://doi.org/10.1145/3583780.3614913
Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., Neubig, G., 2022. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. ACM Comput. Surv. https://doi.org/10.1145/3560815
Liu, X., Sun, T., Huang, X., Qiu, X., 2022. Late Prompt Tuning: A Late Prompt Could Be Better Than Many Prompts, in: Goldberg, Y., Kozareva, Z., Zhang, Y. (Eds.), Findings of the Association for Computational Linguistics: EMNLP 2022. Presented at the Findings 2022, Association for Computational Linguistics, Abu Dhabi, United Arab Emirates, pp. 1325–1338. https://doi.org/10.18653/v1/2022.findings-emnlp.95
Liu, X., Zheng, Y., Du, Z., Ding, M., Qian, Y., Yang, Z., Tang, J., 2021. GPT Understands, Too. https://doi.org/10.48550/arXiv.2103.10385
Longpre, S., Hou, L., Vu, T., Webson, A., Chung, H.W., Tay, Y., Zhou, D., Le, Q.V., Zoph, B., Wei, J., Roberts, A., 2023. The Flan Collection: Designing Data and Methods for Effective Instruction Tuning. https://doi.org/10.48550/arXiv.2301.13688
Lou, R., Zhang, K., Yin, W., 2024. Large Language Model Instruction Following: A Survey of Progresses and Challenges.
Mitchell, T.M., n.d. The Need for Biases in Learning Generalizations.
Muennighoff, N., Wang, T., Sutawika, L., Roberts, A., Biderman, S., Le Scao, T., Bari, M.S., Shen, S., Yong, Z.X., Schoelkopf, H., Tang, X., Radev, D., Aji, A.F., Almubarak, K., Albanie, S., Alyafeai, Z., Webson, A., Raff, E., Raffel, C., 2023. Crosslingual Generalization through Multitask Finetuning, in: Rogers, A., Boyd-Graber, J., Okazaki, N. (Eds.), Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Presented at the ACL 2023, Association for Computational Linguistics, Toronto, Canada, pp. 15991–16111. https://doi.org/10.18653/v1/2023.acl-long.891
OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F.L., Almeida, D., Altenschmidt, J., Altman, S., Anadkat, S., Avila, R., Babuschkin, I., Balaji, S., Balcom, V., Baltescu, P., Bao, H., Bavarian, M., Belgum, J., Bello, I., Berdine, J., Bernadett-Shapiro, G., Berner, C., Bogdonoff, L., Boiko, O., Boyd, M., Brakman, A.-L., Brockman, G., Brooks, T., Brundage, M., Button, K., Cai, T., Campbell, R., Cann, A., Carey, B., Carlson, C., Carmichael, R., Chan, B., Chang, C., Chantzis, F., Chen, D., Chen, S., Chen, R., Chen, J., Chen, M., Chess, B., Cho, C., Chu, C., Chung, H.W., Cummings, D., Currier, J., Dai, Y., Decareaux, C., Degry, T., Deutsch, N., Deville, D., Dhar, A., Dohan, D., Dowling, S., Dunning, S., Ecoffet, A., Eleti, A., Eloundou, T., Farhi, D., Fedus, L., Felix, N., Fishman, S.P., Forte, J., Fulford, I., Gao, L., Georges, E., Gibson, C., Goel, V., Gogineni, T., Goh, G., Gontijo-Lopes, R., Gordon, J., Grafstein, M., Gray, S., Greene, R., Gross, J., Gu, S.S., Guo, Y., Hallacy, C., Han, J., Harris, J., He, Y., Heaton, M., Heidecke, J., Hesse, C., Hickey, A., Hickey, W., Hoeschele, P., Houghton, B., Hsu, K., Hu, S., Hu, X., Huizinga, J., Jain, Shantanu, Jain, Shawn, Jang, J., Jiang, A., Jiang, R., Jin, H., Jin, D., Jomoto, S., Jonn, B., Jun, H., Kaftan, T., Kaiser, Ł., Kamali, A., Kanitscheider, I., Keskar, N.S., Khan, T., Kilpatrick, L., Kim, J.W., Kim, C., Kim, Y., Kirchner, H., Kiros, J., Knight, M., Kokotajlo, D., Kondraciuk, Ł., Kondrich, A., Konstantinidis, A., Kosic, K., Krueger, G., Kuo, V., Lampe, M., Lan, I., Lee, T., Leike, J., Leung, J., Levy, D., Li, C.M., Lim, R., Lin, M., Lin, S., Litwin, M., Lopez, T., Lowe, R., Lue, P., Makanju, A., Malfacini, K., Manning, S., Markov, T., Markovski, Y., Martin, B., Mayer, K., Mayne, A., McGrew, B., McKinney, S.M., McLeavey, C., McMillan, P., McNeil, J., Medina, D., Mehta, A., Menick, J., Metz, L., Mishchenko, A., Mishkin, P., Monaco, V., Morikawa, E., Mossing, D., Mu, T., Murati, M., Murk, O., Mély, D., Nair, A., Nakano, R., Nayak, R., Neelakantan, A., Ngo, R., Noh, H., Ouyang, L., O’Keefe, C., Pachocki, J., Paino, A., Palermo, J., Pantuliano, A., Parascandolo, G., Parish, J., Parparita, E., Passos, A., Pavlov, M., Peng, A., Perelman, A., Peres, F. de A.B., Petrov, M., Pinto, H.P. de O., Michael, Pokorny, Pokrass, M., Pong, V., Powell, T., Power, A., Power, B., Proehl, E., Puri, R., Radford, A., Rae, J., Ramesh, A., Raymond, C., Real, F., Rimbach, K., Ross, C., Rotsted, B., Roussez, H., Ryder, N., Saltarelli, M., Sanders, T., Santurkar, S., Sastry, G., Schmidt, H., Schnurr, D., Schulman, J., Selsam, D., Sheppard, K., Sherbakov, T., Shieh, J., Shoker, S., Shyam, P., Sidor, S., Sigler, E., Simens, M., Sitkin, J., Slama, K., Sohl, I., Sokolowsky, B., Song, Y., Staudacher, N., Such, F.P., Summers, N., Sutskever, I., Tang, J., Tezak, N., Thompson, M., Tillet, P., Tootoonchian, A., Tseng, E., Tuggle, P., Turley, N., Tworek, J., Uribe, J.F.C., Vallone, A., Vijayvergiya, A., Voss, C., Wainwright, C., Wang, J.J., Wang, A., Wang, B., Ward, J., Wei, J., Weinmann, C.J., Welihinda, A., Welinder, P., Weng, J., Weng, L., Wiethoff, M., Willner, D., Winter, C., Wolrich, S., Wong, H., Workman, L., Wu, S., Wu, J., Wu, M., Xiao, K., Xu, T., Yoo, S., Yu, K., Yuan, Q., Zaremba, W., Zellers, R., Zhang, C., Zhang, M., Zhao, S., Zheng, T., Zhuang, J., Zhuk, W., Zoph, B., 2023. GPT-4 Technical Report. https://doi.org/10.48550/arXiv.2303.08774
Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P.F., Leike, J., Lowe, R., 2022. Training language models to follow instructions with human feedback. Adv. Neural Inf. Process. Syst. 35, 27730–27744.
Peng, B., Li, C., He, P., Galley, M., Gao, J., 2023. Instruction Tuning with GPT-4. https://doi.org/10.48550/arXiv.2304.03277
Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettlemoyer, L., 2018. Deep Contextualized Word Representations, in: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Presented at the Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), Association for Computational Linguistics, New Orleans, Louisiana, pp. 2227–2237. https://doi.org/10.18653/v1/N18-1202
Petroni, F., Rocktäschel, T., Riedel, S., Lewis, P., Bakhtin, A., Wu, Y., Miller, A., 2019. Language Models as Knowledge Bases?, in: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Presented at the EMNLP-IJCNLP 2019, Association for Computational Linguistics, Hong Kong, China, pp. 2463–2473. https://doi.org/10.18653/v1/D19-1250
Prasad, A., Hase, P., Zhou, X., Bansal, M., 2023. GrIPS: Gradient-free, Edit-based Instruction Search for Prompting Large Language Models, in: Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics. Presented at the EACL 2023, Association for Computational Linguistics, Dubrovnik, Croatia, pp. 3845–3864. https://doi.org/10.18653/v1/2023.eacl-main.277
Pryzant, R., Iter, D., Li, J., Lee, Y.T., Zhu, C., Zeng, M., 2023. Automatic Prompt Optimization with “Gradient Descent” and Beam Search. https://doi.org/10.48550/arXiv.2305.03495
Qi, Z., Tan, X., Shi, S., Qu, C., Xu, Y., Qi, Y., 2023. PILLOW: Enhancing Efficient Instruction Fine-tuning via Prompt Matching, in: Wang, M., Zitouni, I. (Eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track. Presented at the EMNLP 2023, Association for Computational Linguistics, Singapore, pp. 471–482.
Qin, G., Eisner, J., 2021. Learning How to Ask: Querying LMs with Mixtures of Soft Prompts, in: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Presented at the NAACL-HLT 2021, Association for Computational Linguistics, Online, pp. 5203–5212. https://doi.org/10.18653/v1/2021.naacl-main.410
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., 2019. Language models are unsupervised multitask learners. OpenAI Blog 1, 9.
Rae, J.W., Borgeaud, S., Cai, T., Millican, K., Hoffmann, J., Song, F., Aslanides, J., Henderson, S., Ring, R., Young, S., Rutherford, E., Hennigan, T., Menick, J., Cassirer, A., Powell, R., Driessche, G. van den, Hendricks, L.A., Rauh, M., Huang, P.-S., Glaese, A., Welbl, J., Dathathri, S., Huang, S., Uesato, J., Mellor, J., Higgins, I., Creswell, A., McAleese, N., Wu, A., Elsen, E., Jayakumar, S., Buchatskaya, E., Budden, D., Sutherland, E., Simonyan, K., Paganini, M., Sifre, L., Martens, L., Li, X.L., Kuncoro, A., Nematzadeh, A., Gribovskaya, E., Donato, D., Lazaridou, A., Mensch, A., Lespiau, J.-B., Tsimpoukelli, M., Grigorev, N., Fritz, D., Sottiaux, T., Pajarskas, M., Pohlen, T., Gong, Z., Toyama, D., d’Autume, C. de M., Li, Y., Terzi, T., Mikulik, V., Babuschkin, I., Clark, A., Casas, D. de L., Guy, A., Jones, C., Bradbury, J., Johnson, M., Hechtman, B., Weidinger, L., Gabriel, I., Isaac, W., Lockhart, E., Osindero, S., Rimell, L., Dyer, C., Vinyals, O., Ayoub, K., Stanway, J., Bennett, L., Hassabis, D., Kavukcuoglu, K., Irving, G., 2022. Scaling Language Models: Methods, Analysis & Insights from Training Gopher. https://doi.org/10.48550/arXiv.2112.11446
Reynolds, L., McDonell, K., 2021. Prompt Programming for Large Language Models: Beyond the Few-Shot Paradigm, in: Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, CHI EA ’21. Association for Computing Machinery, New York, NY, USA, pp. 1–7. https://doi.org/10.1145/3411763.3451760
Sanh, V., Webson, A., Raffel, C., Bach, S.H., Sutawika, L., Alyafeai, Z., Chaffin, A., Stiegler, A., Scao, T.L., Raja, A., Dey, M., Bari, M.S., Xu, C., Thakker, U., Sharma, S.S., Szczechla, E., Kim, T., Chhablani, G., Nayak, N., Datta, D., Chang, J., Jiang, M.T.-J., Wang, H., Manica, M., Shen, S., Yong, Z.X., Pandey, H., Bawden, R., Wang, T., Neeraj, T., Rozen, J., Sharma, A., Santilli, A., Fevry, T., Fries, J.A., Teehan, R., Bers, T., Biderman, S., Gao, L., Wolf, T., Rush, A.M., 2022. Multitask Prompted Training Enables Zero-Shot Task Generalization. https://doi.org/10.48550/arXiv.2110.08207
Schick, T., Schütze, H., 2021a. Few-Shot Text Generation with Natural Language Instructions, in: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Presented at the EMNLP 2021, Association for Computational Linguistics, Online and Punta Cana, Dominican Republic, pp. 390–402. https://doi.org/10.18653/v1/2021.emnlp-main.32
Schick, T., Schütze, H., 2021b. Exploiting Cloze-Questions for Few-Shot Text Classification and Natural Language Inference, in: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. Presented at the EACL 2021, Association for Computational Linguistics, Online, pp. 255–269. https://doi.org/10.18653/v1/2021.eacl-main.20
Schick, T., Schütze, H., 2021c. It’s Not Just Size That Matters: Small Language Models Are Also Few-Shot Learners, in: Toutanova, K., Rumshisky, A., Zettlemoyer, L., Hakkani-Tur, D., Beltagy, I., Bethard, S., Cotterell, R., Chakraborty, T., Zhou, Y. (Eds.), Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Presented at the NAACL-HLT 2021, Association for Computational Linguistics, Online, pp. 2339–2352. https://doi.org/10.18653/v1/2021.naacl-main.185
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O., 2017. Proximal Policy Optimization Algorithms.
Shin, R., Lin, C., Thomson, S., Chen, C., Roy, S., Platanios, E.A., Pauls, A., Klein, D., Eisner, J., Van Durme, B., 2021. Constrained Language Models Yield Few-Shot Semantic Parsers, in: Moens, M.-F., Huang, X., Specia, L., Yih, S.W. (Eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Presented at the EMNLP 2021, Association for Computational Linguistics, Online and Punta Cana, Dominican Republic, pp. 7699–7715. https://doi.org/10.18653/v1/2021.emnlp-main.608
Shin, T., Razeghi, Y., Logan IV, R.L., Wallace, E., Singh, S., 2020. AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts, in: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Presented at the EMNLP 2020, Association for Computational Linguistics, Online, pp. 4222–4235. https://doi.org/10.18653/v1/2020.emnlp-main.346
Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R., Voss, C., Radford, A., Amodei, D., Christiano, P.F., 2020. Learning to summarize with human feedback, in: Advances in Neural Information Processing Systems. Curran Associates, Inc., pp. 3008–3021.
Tang, T., Li, J., Zhao, W.X., Wen, J.-R., 2022. Context-Tuning: Learning Contextualized Prompts for Natural Language Generation, in: Proceedings of the 29th International Conference on Computational Linguistics. Presented at the COLING 2022, International Committee on Computational Linguistics, Gyeongju, Republic of Korea, pp. 6340–6354.
Taori, R., Gulrajani, I., Zhang, T., 2023. Alpaca: A strong, replicable instruction-following model. [WWW Document]. URL https://crfm.stanford.edu/2023/03/13/alpaca.html
Thoppilan, R., De Freitas, D., Hall, J., Shazeer, N., Kulshreshtha, A., Cheng, H.-T., Jin, A., Bos, T., Baker, L., Du, Y., Li, Y., Lee, H., Zheng, H.S., Ghafouri, A., Menegali, M., Huang, Y., Krikun, M., Lepikhin, D., Qin, J., Chen, D., Xu, Y., Chen, Z., Roberts, A., Bosma, M., Zhao, V., Zhou, Y., Chang, C.-C., Krivokon, I., Rusch, W., Pickett, M., Srinivasan, P., Man, L., Meier-Hellstern, K., Morris, M.R., Doshi, T., Santos, R.D., Duke, T., Soraker, J., Zevenbergen, B., Prabhakaran, V., Diaz, M., Hutchinson, B., Olson, K., Molina, A., Hoffman-John, E., Lee, J., Aroyo, L., Rajakumar, R., Butryna, A., Lamm, M., Kuzmina, V., Fenton, J., Cohen, A., Bernstein, R., Kurzweil, R., Aguera-Arcas, B., Cui, C., Croak, M., Chi, E., Le, Q., 2022. LaMDA: Language Models for Dialog Applications.
Wan, X., Sun, R., Dai, H., Arik, S., Pfister, T., 2023a. Better Zero-Shot Reasoning with Self-Adaptive Prompting, in: Findings of the Association for Computational Linguistics: ACL 2023. Presented at the Findings 2023, Association for Computational Linguistics, Toronto, Canada, pp. 3493–3514. https://doi.org/10.18653/v1/2023.findings-acl.216
Wan, X., Sun, R., Nakhost, H., Dai, H., Eisenschlos, J.M., Arik, S.O., Pfister, T., 2023b. Universal Self-adaptive Prompting. https://doi.org/10.48550/arXiv.2305.14926
Wang, Yizhong, Ivison, H., Dasigi, P., Hessel, J., Khot, T., Chandu, K.R., Wadden, D., MacMillan, K., Smith, N.A., Beltagy, I., Hajishirzi, H., 2023a. How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources. https://doi.org/10.48550/arXiv.2306.04751
Wang, Yizhong, Kordi, Y., Mishra, S., Liu, A., Smith, N.A., Khashabi, D., Hajishirzi, H., 2023b. Self-Instruct: Aligning Language Models with Self-Generated Instructions, in: Rogers, A., Boyd-Graber, J., Okazaki, N. (Eds.), Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Presented at the ACL 2023, Association for Computational Linguistics, Toronto, Canada, pp. 13484–13508. https://doi.org/10.18653/v1/2023.acl-long.754
Wang, Y., Mishra, Swaroop, Alipoormolabashi, P., Kordi, Y., Mirzaei, A., Naik, A., Ashok, A., Dhanasekaran, A.S., Arunkumar, A., Stap, D., Pathak, E., Karamanolakis, G., Lai, H., Purohit, I., Mondal, I., Anderson, J., Kuznia, K., Doshi, K., Pal, K.K., Patel, M., Moradshahi, M., Parmar, M., Purohit, M., Varshney, N., Kaza, P.R., Verma, P., Puri, R.S., Karia, R., Doshi, S., Sampat, S.K., Mishra, Siddhartha, Reddy A, S., Patro, S., Dixit, T., Shen, X., 2022. Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks, in: Goldberg, Y., Kozareva, Z., Zhang, Y. (Eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Presented at the EMNLP 2022, Association for Computational Linguistics, Abu Dhabi, United Arab Emirates, pp. 5085–5109. https://doi.org/10.18653/v1/2022.emnlp-main.340
Wang, Yufei, Zhong, W., Li, L., Mi, F., Zeng, X., Huang, W., Shang, L., Jiang, X., Liu, Q., 2023. Aligning Large Language Models with Human: A Survey.
Wei, J., Bosma, M., Zhao, V.Y., Guu, K., Yu, A.W., Lester, B., Du, N., Dai, A.M., Le, Q.V., 2022. Finetuned Language Models Are Zero-Shot Learners.
Weller, O., Lourie, N., Gardner, M., Peters, M.E., 2020. Learning from Task Descriptions, in: Webber, B., Cohn, T., He, Y., Liu, Y. (Eds.), Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Presented at the EMNLP 2020, Association for Computational Linguistics, Online, pp. 1361–1375. https://doi.org/10.18653/v1/2020.emnlp-main.105
Wen, Y., Jain, N., Kirchenbauer, J., Goldblum, M., Geiping, J., Goldstein, T., 2023. Hard Prompts Made Easy: Gradient-Based Discrete Optimization for Prompt Tuning and Discovery. https://doi.org/10.48550/arXiv.2302.03668
Wu, Z., Wang, S., Gu, J., Hou, R., Dong, Y., Vydiswaran, V.G.V., Ma, H., 2022. IDPG: An Instance-Dependent Prompt Generation Method, in: Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Presented at the NAACL-HLT 2022, Association for Computational Linguistics, Seattle, United States, pp. 5507–5521. https://doi.org/10.18653/v1/2022.naacl-main.403
Xu, C., Sun, Q., Zheng, K., Geng, X., Zhao, P., Feng, J., Tao, C., Jiang, D., 2023. WizardLM: Empowering Large Language Models to Follow Complex Instructions. https://doi.org/10.48550/arXiv.2304.12244
Xu, H., Chen, Y., Du, Y., Shao, N., Yanggang, W., Li, H., Yang, Z., 2022. GPS: Genetic Prompt Search for Efficient Few-Shot Learning, in: Goldberg, Y., Kozareva, Z., Zhang, Y. (Eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Presented at the EMNLP 2022, Association for Computational Linguistics, Abu Dhabi, United Arab Emirates, pp. 8162–8171. https://doi.org/10.18653/v1/2022.emnlp-main.559
Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q.V., Zhou, D., Chen, X., 2023. Large Language Models as Optimizers.
Zhang, Shengyu, Dong, L., Li, X., Zhang, Sen, Sun, X., Wang, S., Li, J., Hu, R., Zhang, T., Wu, F., Wang, G., 2023. Instruction Tuning for Large Language Models: A Survey.
Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y., 2020. BERTScore: Evaluating Text Generation with BERT. https://doi.org/10.48550/arXiv.1904.09675
Zhang, T., Wang, X., Zhou, D., Schuurmans, D., Gonzalez, J.E., 2022. TEMPERA: Test-Time Prompting via Reinforcement Learning. https://doi.org/10.48550/arXiv.2211.11890
Zhou, C., Liu, P., Xu, P., Iyer, S., Sun, J., Mao, Y., Ma, X., Efrat, A., Yu, P., Yu, L., Zhang, S., Ghosh, G., Lewis, M., Zettlemoyer, L., Levy, O., 2023. LIMA: Less Is More for Alignment.
Zhou, J., Bhat, S., 2021. Paraphrase Generation: A Survey of the State of the Art, in: Moens, M.-F., Huang, X., Specia, L., Yih, S.W. (Eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Presented at the EMNLP 2021, Association for Computational Linguistics, Online and Punta Cana, Dominican Republic, pp. 5075–5086. https://doi.org/10.18653/v1/2021.emnlp-main.414
Zhou, Y., Muresanu, A.I., Han, Z., Paster, K., Pitis, S., Chan, H., Ba, J., 2023. Large Language Models Are Human-Level Prompt Engineers. https://doi.org/10.48550/arXiv.2211.01910 |