參考文獻 |
中文文獻
內政部戶政司(2024)。內政部戶政司全球資訊網 人口統計圖。https://www.ris.gov.tw/app/portal/346
張言博、趙志梅、楊雪、趙霏、綦小蓉、楊春霞、潘安、潘雄飛(2019)。妊娠期糖尿病對早產發生風險影響。中國公共衛生,35(9),1142-1145。
黃新皓(2021)。日本「少子化的三十年」:考察與啟示。全球政治評論,(特集006),1-33。
翟曉蔚、吳田英、梁思銘、秦德燕(2013)。早產低出生體質量兒影響因素探討。研究 [J],31(2),122-125。
衛生福利部國民健康署(2022)。中華民國111年出生通報統計年報https://www.hpa.gov.tw/File/Attach/17595/File_22430.pdf
盧瑞晟、陳玉瑞、林虹伶、李錦霞、蔡孟廷、吳定中(2019)。影響台灣早產兒出生率變化之相關因素初探。醫療資訊雜誌,28(4),1-9。
英文文獻
Abbas, H. T., Alic, L., Erraguntla, M., Ji, J. X., Abdul-Ghani, M., Abbasi, Q. H., & Qaraqe, M. K. (2019). Predicting long-term type 2 diabetes with support vector machine using oral glucose tolerance test. PLoS One, 14(12), e0219636. https://doi.org/10.1371/journal.pone.0219636
Alberola-Rubio, J., Garcia-Casado, J., Prats-Boluda, G., Ye-Lin, Y., Desantes, D., Valero, J., & Perales, A. (2017). Prediction of labor onset type: Spontaneous vs induced; role of electrohysterography? Computer Methods and Programs in Biomedicine, 144, 127-133. https://doi.org/https://doi.org/10.1016/j.cmpb.2017.03.018
Aradhya, S., Tegunimataka, A., Kravdal, O., Martikainen, P., Myrskyla, M., Barclay, K., & Goisis, A. (2023). Maternal age and the risk of low birthweight and pre-term delivery: a pan-Nordic comparison. Int J Epidemiol, 52(1), 156-164. https://doi.org/10.1093/ije/dyac211
Arayeshgari, M., Najafi-Ghobadi, S., Tarhsaz, H., Parami, S., & Tapak, L. (2023). Machine Learning-based Classifiers for the Prediction of Low Birth Weight. Healthc Inform Res, 29(1), 54-63. https://doi.org/10.4258/hir.2023.29.1.54
Beck, S., Wojdyla, D., Say, L., Betran, A. P., Merialdi, M., Requejo, J. H., Rubens, C., Menon, R., & Van Look, P. F. (2010). The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull World Health Organ, 88(1), 31-38. https://doi.org/10.2471/BLT.08.062554
Begum, M., Redoy, R. M., & Das Anty, A. (2021). Preterm Baby Birth Prediction using Machine Learning Techniques 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD),
Chami, H. W., Gueye, M., Ndiaye, M. D., Wade, M., Diouf, A., Diakhate, A., Ndour, S. B., Niang, N., & Mbaye, M. (2019). Relation between Obstetric Outcome and Parity. Open Journal of Obstetrics and Gynecology, 09(06), 894-903. https://doi.org/10.4236/ojog.2019.96087
Chawanpaiboon, S., Vogel, J. P., Moller, A. B., Lumbiganon, P., Petzold, M., Hogan, D., Landoulsi, S., Jampathong, N., Kongwattanakul, K., Laopaiboon, M., Lewis, C., Rattanakanokchai, S., Teng, D. N., Thinkhamrop, J., Watananirun, K., Zhang, J., Zhou, W., & Gulmezoglu, A. M. (2019). Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob Health, 7(1), e37-e46. https://doi.org/10.1016/S2214-109X(18)30451-0
Chen, C. J., Pai, T. W., & Cheng, M. (2015). A support vector machine approach for truncated fingerprint image detection from sweeping fingerprint sensors. Sensors (Basel), 15(4), 7807-7822. https://doi.org/10.3390/s150407807
Daemi, A., Ravaghi, H., & Jafari, M. (2019). Risk factors of neonatal mortality in Iran: a systematic review. Med J Islam Repub Iran, 33, 87. https://doi.org/10.34171/mjiri.33.87
Do, H. J., Moon, K. M., & Jin, H. S. (2022). Machine Learning Models for Predicting Mortality in 7472 Very Low Birth Weight Infants Using Data from a Nationwide Neonatal Network. Diagnostics (Basel), 12(3). https://doi.org/10.3390/diagnostics12030625
Dritsas, E., & Trigka, M. (2022). Data-Driven Machine-Learning Methods for Diabetes Risk Prediction. Sensors (Basel), 22(14). https://doi.org/10.3390/s22145304
Engan, K., Meinich-Bache, Ø., Brunner, S., Myklebust, H., Rong, C., García-Torres, J., Ersdal, H. L., Johannessen, A., Pike, H. M., & Rettedal, S. (2023). Newborn Time - improved newborn care based on video and artificial intelligence - study protocol. BMC Digital Health, 1(1). https://doi.org/10.1186/s44247-023-00010-7
Gandhi, B., Hagan, J., & Patil, M. (2023). EBNEO commentary: Prediction of extubation failure among low birthweight neonates using machine learning. Acta Paediatr, 112(9), 2016-2017. https://doi.org/10.1111/apa.16813
Hinkle, S. N., Albert, P. S., Mendola, P., Sjaarda, L. A., Yeung, E., Boghossian, N. S., & Laughon, S. K. (2014). The association between parity and birthweight in a longitudinal consecutive pregnancy cohort. Paediatr Perinat Epidemiol, 28(2), 106-115. https://doi.org/10.1111/ppe.12099
Hirve, S., & Ganatra, B. (1994). <determinants-of-low-birth-weight-a-community-based-46kcpw22hd.pdf>. 31(10), 1221-1225.
Houweling, T. A. J., van Klaveren, D., Das, S., Azad, K., Tripathy, P., Manandhar, D., Neuman, M., de Jonge, E., Been, J. V., Steyerberg, E., & Costello, A. (2019). A prediction model for neonatal mortality in low- and middle-income countries: an analysis of data from population surveillance sites in India, Nepal and Bangladesh. Int J Epidemiol, 48(1), 186-198. https://doi.org/10.1093/ije/dyy194
Hu, X., Hu, X., Yu, Y., & Wang, J. (2023). Prediction model for gestational diabetes mellitus using the XG Boost machine learning algorithm. Front Endocrinol (Lausanne), 14, 1105062. https://doi.org/10.3389/fendo.2023.1105062
Jafari, F., Eftekhar, H., Pourreza, A., & Mousavi, J. (2010). Socio-economic and medical determinants of low birth weight in Iran: 20 years after establishment of a primary healthcare network. Public Health, 124(3), 153-158. https://doi.org/https://doi.org/10.1016/j.puhe.2010.02.003
Jan, Y. T., Tsai, P. S., Huang, W. H., Chou, L. Y., Huang, S. C., Wang, J. Z., Lu, P. H., Lin, D. C., Yen, C. S., Teng, J. P., Mok, G. S. P., Shih, C. T., & Wu, T. H. (2023). Machine learning combined with radiomics and deep learning features extracted from CT images: a novel AI model to distinguish benign from malignant ovarian tumors. Insights Imaging, 14(1), 68. https://doi.org/10.1186/s13244-023-01412-x
K, S. D., N, P. H., & R, J. (2022). Comparison of Post-operative Complications among Patients Undergoing Cesarean Section vs Normal Vaginal Delivery. Scholars International Journal of Obstetrics and Gynecology, 5(6), 233-237. https://doi.org/10.36348/sijog.2022.v05i07.003
Kuhle, S., Maguire, B., Zhang, H., Hamilton, D., Allen, A. C., Joseph, K. S., & Allen, V. M. (2018). Comparison of logistic regression with machine learning methods for the prediction of fetal growth abnormalities: a retrospective cohort study. BMC Pregnancy Childbirth, 18(1), 333. https://doi.org/10.1186/s12884-018-1971-2
Kwok, T. C., Henry, C., Saffaran, S., Meeus, M., Bates, D., Van Laere, D., Boylan, G., Boardman, J. P., & Sharkey, D. (2022). Application and potential of artificial intelligence in neonatal medicine. Semin Fetal Neonatal Med, 27(5), 101346. https://doi.org/10.1016/j.siny.2022.101346
Langsetmo, L., Schousboe, J. T., Taylor, B. C., Cauley, J. A., Fink, H. A., Cawthon, P. M., Kado, D. M., Ensrud, K. E., & Osteoporotic Fractures in Men Research, G. (2023). Advantages and Disadvantages of Random Forest Models for Prediction of Hip Fracture Risk Versus Mortality Risk in the Oldest Old. JBMR Plus, 7(8), e10757. https://doi.org/10.1002/jbm4.10757
Lee, J., Cai, J., Li, F., & Vesoulis, Z. A. (2021). Predicting mortality risk for preterm infants using random forest. Sci Rep, 11(1), 7308. https://doi.org/10.1038/s41598-021-86748-4
Liu, R., Liu, Y., Zhang, F., Wei, J., & Wu, L. (2023). A cuproptosis random forest cox score model-based evaluation of prognosis, mutation characterization, immune infiltration, and drug sensitivity in hepatocellular carcinoma. Front Immunol, 14, 1146411. https://doi.org/10.3389/fimmu.2023.1146411
Loomans, E. M., van Dijk, A. E., Vrijkotte, T. G., van Eijsden, M., Stronks, K., Gemke, R. J., & Van den Bergh, B. R. (2013). Psychosocial stress during pregnancy is related to adverse birth outcomes: results from a large multi-ethnic community-based birth cohort. Eur J Public Health, 23(3), 485-491. https://doi.org/10.1093/eurpub/cks097
Monfared, V., & Hashemi, A. (2023). Prediction Analysis of Preterm Neonates Mortality using Machine Learning Algorithms via Python Programming. bioRxiv. https://doi.org/10.1101/2023.01.20.524905
Neamtu, B. M., Visa, G., Maniu, I., Ognean, M. L., Perez-Elvira, R., Dragomir, A., Agudo, M., Sofariu, C. R., Gheonea, M., Pitic, A., Brad, R., Matei, C., Teodoru, M., & Bacila, C. (2021). A Decision-Tree Approach to Assist in Forecasting the Outcomes of the Neonatal Brain Injury. Int J Environ Res Public Health, 18(9). https://doi.org/10.3390/ijerph18094807
Peelen, M. J. C. S., Kazemier, B. M., Ravelli, A. C. J., De Groot, C. J. M., Van Der Post, J. A. M., Mol, B. W. J., Hajenius, P. J., & Kok, M. (2016). Impact of fetal gender on the risk of preterm birth, a national cohort study. Acta Obstetricia et Gynecologica Scandinavica, 95(9), 1034-1041. https://doi.org/https://doi.org/10.1111/aogs.12929
Pusdekar, Y. V., Patel, A. B., Kurhe, K. G., Bhargav, S. R., Thorsten, V., Garces, A., Goldenberg, R. L., Goudar, S. S., Saleem, S., Esamai, F., Chomba, E., Bauserman, M., Bose, C. L., Liechty, E. A., Krebs, N. F., Derman, R. J., Carlo, W. A., Koso-Thomas, M., Nolen, T. L., . . . Hibberd, P. L. (2020). Rates and risk factors for preterm birth and low birthweight in the global network sites in six low- and low middle-income countries. Reprod Health, 17(Suppl 3), 187. https://doi.org/10.1186/s12978-020-01029-z
Quellec, G., Kowal, J., Hasler, P. W., Scholl, H. P. N., Zweifel, S., Konstantinos, B., de Carvalho, J. E. R., Heeren, T., Egan, C., Tufail, A., & Maloca, P. M. (2019). Feasibility of support vector machine learning in age-related macular degeneration using small sample yielding sparse optical coherence tomography data. Acta Ophthalmol, 97(5), e719-e728. https://doi.org/10.1111/aos.14055
Ravindran, S., Jambek, A. B., Muthusamy, H., & Neoh, S.-C. (2015). A Novel Clinical Decision Support System Using Improved Adaptive Genetic Algorithm for the Assessment of Fetal Well-Being. Computational and Mathematical Methods in Medicine, 2015(1), 283532. https://doi.org/https://doi.org/10.1155/2015/283532
Remya, K., Ramya, R., Sadim, M., Kalpana, B., & Amirthayogam, G. (2023, 12-13 Dec. 2023). Artificial Intelligence Techniques for Early Prediction of Neonatal Jaundice. 2023 4th International Conference on Computation, Automation and Knowledge Management (ICCAKM),
Sharma, P. (2023). Advanced maternal age: maternal and perinatal outcomes. International Journal of Reproduction, Contraception, Obstetrics and Gynecology, 12(4), 1133-1139. https://doi.org/10.18203/2320-1770.ijrcog20230827
Silva, M. D. B., de Oliveira, R. V. C., da Silveira Barroso Alves, D., & Melo, E. C. P. (2021). Predicting risk of early discontinuation of exclusive breastfeeding at a Brazilian referral hospital for high-risk neonates and infants: a decision-tree analysis. Int Breastfeed J, 16(1), 2. https://doi.org/10.1186/s13006-020-00349-x
Singh, R., Bisht, N., & Parveen, H. (2019). Characteristics, Causes and Early Interventions for Preterm Birth - A Review Paper. International Journal of Current Microbiology and Applied Sciences, 8(05), 1573-1580. https://doi.org/10.20546/ijcmas.2019.805.182
Sudha, Sehrawat, H., Singh, Y., & Jaglan, V. (2022). Machine Learning Approaches For Disease Prediction:- A Review 2022 IEEE World Conference on Applied Intelligence and Computing (AIC),
Sutton, R. T., Pincock, D., Baumgart, D. C., Sadowski, D. C., Fedorak, R. N., & Kroeker, K. I. (2020). An overview of clinical decision support systems: benefits, risks, and strategies for success. npj Digital Medicine, 3(1), 17. https://doi.org/10.1038/s41746-020-0221-y
Turova, V., Sidorenko, I., Eckardt, L., Rieger-Fackeldey, E., Felderhoff-Muser, U., Alves-Pinto, A., & Lampe, R. (2020). Machine learning models for identifying preterm infants at risk of cerebral hemorrhage. PLoS One, 15(1), e0227419. https://doi.org/10.1371/journal.pone.0227419
Walani, S. R. (2020). Global burden of preterm birth. Int J Gynaecol Obstet, 150(1), 31-33. https://doi.org/10.1002/ijgo.13195
Ward, C., & Caughey, A. B. (2022). Late preterm births: neonatal mortality and morbidity in twins vs. singletons. The Journal of Maternal-Fetal & Neonatal Medicine, 35(25), 7962-7967. https://doi.org/10.1080/14767058.2021.1939303
WHO. (2023). Improving maternal and newborn health and survival and reducing stillbirth Progress report 2023.
Xu, Y., Yang, X., Huang, H., Peng, C., Ge, Y., Wu, H., Wang, J., Xiong, G., & Yi, Y. (2019). Extreme Gradient Boosting Model Has a Better Performance in Predicting the Risk of 90-Day Readmissions in Patients with Ischaemic Stroke. Journal of Stroke and Cerebrovascular Diseases, 28(12), 104441. https://doi.org/https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104441 |