參考文獻 |
Barbieri, F., & Saggion, H. (2014). Modelling irony in Twitter. Proceedings of the Student Research Workshop at the 14th Conference of the European Chapter of the Association for Computational Linguistics, 56-64. https://doi.org/10.3115/v1/E14-3007
Bamman, D., & Smith, N. (2021). Contextualized sarcasm detection on Twitter. Proceedings of the International AAAI Conference on Web and Social Media, 9(1), 574-577. https://doi.org/10.1609/icwsm.v9i1.14655
Baroiu, A.-C., & Trausan-Matu, S. (2023). Comparison of Deep Learning Models for Automatic Detection of Sarcasm Context on the MUStARD Dataset. Electronics, 12(3), 666. https://doi.org/10.3390/electronics12030666
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140. https://doi.org/10.1007/BF00058655
Cui, Y., Che, W., Liu, T., Qin, B., & Yang, Z. (2021). Pre-Training With Whole Word Masking for Chinese BERT. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT 2021). https://arxiv.org/abs/2004.06354
Davidov, D., Tsur, O., & Rappoport, A. (2010). Semi-supervised recognition of sarcastic sentences in Twitter and Amazon. In Proceedings of the Fourteenth Conference on Computational Natural Language Learning (CoNLL 2010), 107-116. https://doi.org/10.3115/1596374.1596399
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. http://arxiv.org/abs/1810.04805.
Dietterich, T. G. (2000). Ensemble methods in machine learning. In J. Kittler & F. Roli (Eds.), Multiple Classifier Systems (Vol. 1857, pp. 1-15). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-45014-9_1.
Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119-139. https://doi.org/10.1006/jcss.1997.1504.
Ganaie, M. A., Hu, M., Malik, A. K., Tanveer, M., & Suganthan, P. N. (2022). Ensemble deep learning: A review. Engineering Applications of Artificial Intelligence, 115, 105151. https://doi.org/10.1016/j.engappai.2022.105151.
Ghosh, D., & Veale, T. (2016). Fracking sarcasm using convolutional neural network. Proceedings of the 7th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, 161-169. https://doi.org/10.18653/v1/W16-0425
Gong, X., Zhao, Q., Zhang, J., Mao, R., & Xu, R. (2020). The design and construction of a Chinese sarcasm dataset. arXiv preprint arXiv:2001.00496.
Gonzalez-Ibanez, R., Muresan, S., & Wacholder, N. (2011). Identifying sarcasm in Twitter: A closer look. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, 581-586. https://aclanthology.org/P11-2102.
Jia, X., Deng, Z., Min, F., & Liu, D. (2019). Three-way decisions based feature fusion for Chinese irony detection. International Journal of Approximate Reasoning, 113, 324–335. https://doi.org/10.1016/j.ijar.2019.07.010
Khodak, M., Saunshi, N., & Vodrahalli, K. (2018). A large self-annotated corpus for sarcasm. arXiv preprint arXiv:1704.05579. http://arxiv.org/abs/1704.05579.
Krishna, M. M., Midhunchakkaravarthy, & Vankara, J. (2023). Detection of Sarcasm Using Bi-Directional RNN Based Deep Learning Model in Sentiment Analysis. Journal of Advanced Research in Applied Sciences and Engineering Technology, 31(2), 352–362. https://doi.org/10.37934/araset.31.2.352362.
Kumar, A., Narapareddy, V. T., Aditya Srikanth, V., Malapati, A., & Neti, L. B. M. (2020). Sarcasm detection using multi-head attention based bidirectional LSTM. IEEE Access, 8, 6388-6397. https://doi.org/10.1109/ACCESS.2019.2963630.
Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174. https://doi.org/10.2307/2529310.
Li, J., Pan, H., Lin, Z., Fu, P., & Wang, W. (2021). Sarcasm detection with commonsense knowledge. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29, 3192-3201. https://doi.org/10.1109/TASLP.2021.3120601.
Liu, B. (2010). Sentiment analysis and subjectivity. In N. Indurkhya & F. J. Damerau (Eds.), Handbook of Natural Language Processing (2nd ed., pp. 627-666). CRC Press.
Liu, L., Priestley, J. L., Zhou, Y., Ray, H. E., & Han, M. (2019). A2Text-Net: A novel deep neural network for sarcasm detection. In 2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI), 118-126. https://doi.org/10.1109/CogMI48466.2019.00025.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692. http://arxiv.org/abs/1907.11692.
Mohammed, A., & Kora, R. (2022). An effective ensemble deep learning framework for text classification. Journal of King Saud University - Computer and Information Sciences, 34(10), 8825-8837. https://doi.org/10.1016/j.jksuci.2021.11.001.
Pexman, P. M. (2018). How do we understand sarcasm? Frontiers in Psychology, 9, 549. https://doi.org/10.3389/fpsyg.2018.00549.
Plepi, J., Flek, L., & Ai, C. (2021). Perceived and intended sarcasm detection with graph attention networks. Findings of the Association for Computational Linguistics: EMNLP 2021, 4746-4753. https://arxiv.org/abs/2110.04001.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2018). Language models are unsupervised multitask learners. OpenAI Blog. http://arxiv.org/abs/1901.09612.
Reyes, A., Rosso, P., & Veale, T. (2013). A multidimensional approach for detecting irony in Twitter. Language Resources and Evaluation, 47(1), 239-268. https://doi.org/10.1007/s10579-012-9196-x.
Riloff, E., Qadir, A., Surve, P., Silva, L. D., Gilbert, N., & Huang, R. (2013). Sarcasm as contrast between a positive sentiment and negative situation. Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 704-714. https://aclanthology.org/D13-1066.
Sagi, O., & Rokach, L. (2018). Ensemble learning: A survey. WIREs Data Mining and Knowledge Discovery, 8(4), e1249. https://doi.org/10.1002/widm.1249.
Tang, Y., & Chen, H. H. (2014). Chinese irony corpus construction and ironic structure analysis. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 70-79. https://aclanthology.org/D14-1066.
Tay, Y., Tuan, L. A., Hui, S. C., & Su, J. (2018). Reasoning with sarcasm by reading in-between. arXiv preprint arXiv:1805.02856. http://arxiv.org/abs/1805.02856.
凃育婷 (2020). 基於順序遷移學習開發繁體中文情感分析工具. 碩士論文, 國立台灣大學資訊管理研究所.
Van Hee, C., Lefever, E., & Hoste, V. (2018). SemEval-2018 Task 3: Irony detection in English tweets. Proceedings of The 12th International Workshop on Semantic Evaluation, 39-50. https://doi.org/10.18653/v1/S18-1005.
Wen, Z., Gui, L., Wang, Q., Guo, M., Yu, X., Du, J., Xu, R. (2022). Sememe knowledge and auxiliary information enhanced approach for sarcasm detection. Information Processing & Management, 59(3), 102883. https://doi.org/10.1016/j.ipm.2022.102883.
Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241-259. https://doi.org/10.1016/S0893-6080(05)80023-1.
Xiang, R., Gao, X., Long, Y., Li, A., Chersoni, E., Lu, Q., & Huang, C.-R. (2020). Ciron: A new benchmark dataset for Chinese irony detection. Proceedings of The 28th International Conference on Computational Linguistics, 4507-4517. https://aclanthology.org/2020.coling-main.395.
Xiong, T., Zhang, P., Zhu, H., & Yang, Y. (2019). Sarcasm detection with self-matching networks and low-rank bilinear pooling. The World Wide Web Conference, 2115-2124. https://doi.org/10.1145/3308558.3313735.
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). XLNet: Generalized autoregressive pretraining for language understanding. arXiv preprint arXiv:1906.08237. https://arxiv.org/abs/1906.08237.
Zhang, H., Lu, H., Li, Y., & Li, S. (2019). Detecting sarcasm in text: An iterative semi-supervised approach. Expert Systems with Applications, 138, 112834. https://doi.org/10.1016/j.eswa.2019.07.031.
Zhang, S., Zhang, X., Chan, J., & Rosso, P. (2019). Irony detection via sentiment-based transfer learning. Information Processing & Management, 56(5), 1633-1644. https://doi.org/10.1016/j.ipm.2019.04.006.
Zheng, S., & Yang, M. (2019). A new method of improving BERT for text classification. In Z. Cui, J. Pan, S. Zhang, L. Xiao, & J. Yang (Eds.), Intelligence Science and Big Data Engineering. Big Data and Machine Learning (Vol. 11936, pp. 442-452). Springer International Publishing. https://doi.org/10.1007/978-3-030-36204-1_37. |