參考文獻 |
[1] W. Roh et al., "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results," IEEE Commun. Mag., vol. 52, no. 2, pp. 106-113, Feb. 2014.
[2] L.-H. Huang and H.-K. Chiou, "An ultra-compact 14.9-W X-Band GaN MMIC power amplifier, "in Asia-Pacific Microw. Conf., Dec. 2020, pp. 257-259.
[3] J. C. Mayeda, D. Y. C. Lie and J. Lopez, "A high efficiency fully-monolithic 2-stage C-band GaN power amplifier for 5G microcell applications," IEEE Trans. Wireless and Microw. Circuits and Syst., Waco, TX, USA, Apr. 2018, pp. 1-4.
[4] X. Lu, V. Petrov, D. Moltchanov, S. Andreev, T. Mahmoodi and M. Dohler, "5G-U: conceptualizing integrated utilization of licensed and unlicensed spectrum for future IoT," IEEE Commun. Mag., vol. 57, no. 7, pp. 92-98, Jul. 2019.
[5] H. Jia, C. C. Prawoto, B. Chi, Z. Wang and C. P. Yue, "A full Ka-Band power amplifier with 32.9% PAE and 15.3-dBm power in 65-nm CMOS," IEEE Trans. Circuits Syst. I, vol. 65, no. 9, pp. 2657-2668, Sept. 2018.
[6] B.-W. Huang, Z.-H. Fu and K.-Y. Lin, "A millimeter-wave ultra-wide band power amplifier in 0.15-μm GaAs pHEMT for 5G communication," in Asia-Pacific Microw. Conf., Nov. 2022, pp. 97-99.
[7] S.-J. Fe, S.-H. Lai and H.-Y. Chang, "A 0.5-W 26-31 GHz power amplifier using pre-matching technique in 0.15-μm pHEMT process," in IEEE Trans. Radio Freq. Integr. Techn., Aug. 2021, pp. 1-2.
[8] J. Zhang, T. Wu, L. Nie, D. Wei, S. Ma and J. Ren, "A 20-30 GHz compact pHEMT power amplifier using coupled-line based MCCR matching technique," in IEEE MTT-S Int Microw. Symp. Dig., Aug. 2020, pp. 956-959.
[9] Y.-C. Hsieh, G.-J. Lin, Z.-M. Tsai and T.-H. Chen, "Design and analysis of a high linearity full Ka-band stacked-FET power amplifier using 0.15- μ m GaAs pHEMT process," in IEEE Microw. Compon. Lett. Technol. Lett., vol. 34, no. 4, pp. 427-430, Apr. 2024.
[10] A. A. Babenko, G. Lasser and Z. Popović, "0.01–22-GHz feedback-stabilized single-supply GaAs cascode distributed amplifiers," IEEE Microw. Wireless Compon. Lett., vol. 31, no. 12, pp. 1291-1294, Dec. 2021.
[11] J. J. Komiak, K. Chu and P. C. Chao, "Decade bandwidth 2 to 20 GHz GaN HEMT power amplifier MMICs in DFP and No FP technology,"in IEEE MTT-S Int Microw. Symp. Dig., Jun. 2011, pp. 1-4.
[12] U. Schmid et al., "Ultra-wideband GaN MMIC chip set and high power amplifier module for multi-function defense AESA applications," IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 3043-3051, Aug. 2013.
[13] J.-H. Tsai and T.-W. Huang, “A 38–46 GHz MMIC Doherty power amplifier using post-distortion linearization,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 388-390, May 2007.
[14] M. Fresina, "Trends in GaAs HBTs for wireless and RF," 2011 IEEE Bipolar/BiCMOS Circuits and Technology Meeting, Oct. 2011, pp. 150-153.
[15] Y. Tkachenko, A. Klimashov, C. Wei, Y. Zhao and D. Bartle, "Enhancement mode pHEMT for single supply high efficiency power amplifiers," 1999 29th European Microwave Conference, Oct. 1999, pp. 259-262.
[16] 穩懋 PP15-22 0.15μm InGaAs pHEMT Power Device Layout Design Manual
[17] D. P. Nguyen and A.-V. Pham, "An ultra compact watt-level Ka-band stacked-FET power amplifier," IEEE Microw. Wireless Compon. Lett., vol. 26, no. 7, pp. 516-518, Jul. 2016.
[18] G. Lv, W. Chen and Z. Feng, "A compact and broadband Ka-band asymmetrical GaAs Doherty power amplifier MMIC for 5G communications," in IEEE MTT-S Int Microw. Symp. Dig., Jun. 2018, pp. 808-811.
[19] D. P. Nguyen, B. L. Pham and A.-V. Pham, "A compact Ka-band integrated Doherty amplifier with reconfigurable input network," IEEE Trans. Microw. Theory Techn., vol. 67, no. 1, pp. 205-215, Jan. 2019.
[20] D. P. Nguyen, X.-T. Tran, N. L. K. Nguyen, P. T. Nguyen and A. -V. Pham, "A wideband high efficiency Ka-band MMIC power amplifier for 5G wireless communications," IEEE Int. Symp. on Circuits and Syst., May. 2019, pp. 1-5.
[21] V. Qunaj and P. Reynaert, "Compact transformer-based matching structures for Ka-band power amplifiers," in Asia-Pacific Microw. Conf., Dec. 2019, pp. 914-916.
[22] J. Zhang, T. Wu, L. Nie, D. Wei, S. Ma and J. Ren, "A 20-30 GHz compact pHEMT power amplifier using coupled-line based MCCR matching technique," in IEEE MTT-S Int Microw. Symp. Dig., Aug. 2020, pp. 956-959.
[23] K.-J. Chuang, K. P. Tang, Y.-H. Lin, T.-H. Chen, C.-S. Wu and T.-W. Huang, "An efficient and linear 24.4dBm Ka-band GaAs power amplifier for 5G communication," in IEEE Trans. Radio Freq. Integr. Techn., Aug. 2021, pp. 1-3.
[24] S. C. Cripps, RF Power Amplifiers for Wireless Communications, 2nd ed. Boston, MA: Artech, 2006.
[25] 邱煥凱˙林貴城,ADS應用於射頻功率放大器設計與模擬,國立清華大學出版社,民國103年。
[26] S. C. Cripps, RF Power Amplifiers for Wireless Communication, 2nd. Norwell, MA: Artech House, 2006, ch. 2.
[27] P. J. Tasker, V. Carrubba, P. Wright, J. Lees, J. Benedikt and S. Cripps, "Wideband PA design: The "Continuous" mode of operation," 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Oct. 2012, pp. 1-4.
[28] F. Giannini and L. Scucchia, "A complete class of harmonic matching networks: synthesis and application," IEEE Trans. Microw. Theory Techn., vol. 57, no. 3, pp. 612-619, Mar. 2009.
[29] S. C. Cripps, P. J. Tasker, A. L. Clarke, J. Lees and J. Benedikt, "On the continuity of high efficiency modes in linear RF power amplifiers," IEEE Microw. Wireless Compon. Lett., vol. 19, no. 10, pp. 665-667, Oct. 2009.
[30] P. J. Tasker, V. Carrubba, P. Wright, J. Lees, J. Benedikt and S. Cripps, "Wideband PA design: the "Continuous" mode of operation," IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Oct. 2012, pp. 1-4.
[31] A. Alizadeh, S. Hassanzadehyamchi and A. Medi, "Integrated output matching networks for Class–J/J−1 power amplifiers," IEEE Trans. Circuits Syst. II, vol. 66, no. 8, pp.2921-2934, Aug. 2019.
[32] A. Alizadeh and A. Medi, "Investigation of a class-J mode power amplifier in presence of a second-harmonic voltage at the gate node of the transistor," IEEE Trans. Microw. Theory Techn., vol. 65, no. 8, pp. 3024-3033, Aug. 2017.
[33] A. Alizadeh, M. Frounchi and A. Medi, "Waveform engineering at gate node of Class-J power amplifiers," IEEE Trans. Microw. Theory Techn., vol. 65, no. 7, pp. 2409-2417, Jul. 2017.
[34] A. Alizadeh, S. Hassanzadehyamchi and A. Medi, "Integrated output matching networks for Class–J/J−1 power amplifiers," IEEE Trans. Circuits Syst. II, vol. 66, no. 8, pp. 2921-2934, Aug. 2019.
[35] S. Rezaei, L. Belostotski, F. M. Ghannouchi and P. Aflaki, "Integrated design of a Class-J power amplifier," IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1639-1648, Apr. 2013.
[36] S. Park, J. -L. Woo, U. Kim and Y. Kwon, "Broadband CMOS stacked RF power amplifier using reconfigurable interstage network for wideband envelope tracking," IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1174-1185, Apr. 2015.
[37] A. Sarkar and B. Floyd, "A 28-GHz class-J power amplifier with 18-dBm output power and 35% peak PAE in 120-nm SiGe BiCMOS," 2014 IEEE 14th Topical Meeting on Silicon Monolithic Integrated Circuits in Rf Systems, Jan. 2014, pp. 71-73.
[38] T. Hanna, N. Deltimple and S. Frégonèse, "A wideband highly efficient class-J integrated power amplifier for 5G applications," 2017 15th IEEE International New Circuits and Systems Conference (NEWCAS), Jun. 2017, pp. 325-328.
[39] D. P. Nguyen, T. Pham and A. -V. Pham, "A 28-GHz symmetrical Doherty power amplifier using stacked-FET cells," IEEE Trans. Microw. Theory Techn., vol. 66, no. 6, pp. 2628-2637, Jun. 2018.
[40] D. P. Nguyen, J. Curtis and A. -V. Pham, "A Doherty amplifier with modified load modulation scheme based on load–pull data," IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 227-236, Jan. 2018.
[41] T. Yao et al., "Algorithmic design of CMOS LNAs and PAs for 60-GHz radio," IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, May 2007.
[42] H. Wang, C. Sideris and A. Hajimiri, "A CMOS broadband power amplifier with a transformer-based high-order output matching network," IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2709-2722, Dec. 2010.
[43] R. S. Pengelly, S. M. Wood, J. W. Milligan, S. T. Sheppard and W. L. Pribble, "A review of GaN on SiC high electron-mobility power transistors and MMICs," IEEE Trans. Microw. Theory Techn., vol. 60, no. 6, pp. 1764-1783, Jun. 2012.
[44] M. van Heijningen et al., "Ka-band AlGaN/GaN HEMT high power and driver amplifier MMICs," European Gallium Arsenide and Other Semiconductor Application Symposium, GAAS 2005, Oct. 2005, pp. 237-240.
[45] Bon-Hyun Ku, Sang-Hyun Baek and Songcheol Hong, "A X-band CMOS power amplifier with on-chip transmission line transformers," in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2008, pp. 523-526.
[46] Y.-J. E. Chen, L.-Y. Yang, and W.-C. Yeh, “An integrated wideband power amplifier for cognitive radio,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 10, pp. 2053–2058, Oct. 2007.
[47] M. Akbarpour, M. Helaoui, and F. M. Ghannouchi, “A transformer-less load-modulated (TLLM) architecture for efficient wideband poweramplifiers,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 9, pp.2863–2874, Sep. 2012.
[48] R. Darraji, F. M. Ghannouchi, and M. Healoui, “Mitigation of band-width limitation in wireless Doherty amplifiers with substantial band-width enhancement using digital techniques,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 9, pp. 2875–2885, Sep. 2012.
[49] J. S. Moon et al., "High efficiency X-band class-E GaN MMIC high-power amplifiers," 2012 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications, Jan. 2012, pp. 9-12.
[50] T. Senju, K. Takagi and H. Kimura, "A 2 W 45 % PAE X-band GaN HEMT class-F MMIC power amplifier," in Asia-Pacific Microw. Conf., Nov. 2018, pp. 956-958.
[51] L.-H. Huang and H. -K. Chiou, "An ultra-compact 14.9-W X-band GaN MMIC power amplifier," in Asia-Pacific Microw. Conf., Dec. 2020, pp. 257-259.
[52] S. H. Vardhan, D. Pathak, R. Ramalingam, M. Mehnde and A. Dutta, "Microstrip radial stub based 4W GaN MMIC power amplifier for X-band radar applications," 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Feb. 2021, pp. 1-4.
[53] L. Kang, W. Chen and A. Wu, "A reconfigurable S-/X-Band GaN MMIC power amplifier," IEEE Microw. Wireless Compon. Lett., vol. 32, no. 6, pp. 547-550, Jun. 2022.
[54] H. Park, H. Nam, K. Choi, J. Kim and Y. Kwon, "A 6–18-GHz GaN reactively matched distributed power amplifier using simplified bias network and reduced thermal coupling," IEEE Trans. Microw. Theory Techn., vol. 66, no. 6, pp. 2638-2648, Jun. 2018.
[55] X. Sun, X. Zhu, Y. Wang, P. -L. Chi and T. Yang, "A 2W 9.5-16.5 GHz GaN power amplifier with 30% PAE using transformer-based output matching network," in IEEE MTT-S Int Microw. Symp. Dig., Jun. 2023, pp. 319-322.
[56] Jee, J. Moon, J. Kim, J. Son and B. Kim, "Switching behavior of class-E power amplifier and its operation above maximum frequency," IEEE Trans. Microw. Theory Techn., vol. 60, no. 1, pp. 89-98, Jan. 2012.
[57] B.-H. Ku, S.-H. Baek and S. Hong, “A wideband transformer-coupled CMOS power amplifier for X-band multifunction chips,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 6, pp. 1599-1609, Jun. 2011.
[58] A. K. Kumaran, M. Pashaeifar, M. D’Avino, L. C. N. de Vreede and M. S. Alavi, "On-chip output stage design for a continuous class-F power amplifier," 2021 IEEE International Symposium on Circuits and Systems (ISCAS), May 2021, pp. 1-5.
[59] N. Tuffy, L. Guan, A. Zhu and T. J. Brazil, "A simplified broadband design methodology for linearized high-efficiency continuous class-F power amplifiers," IEEE Trans. Microw. Theory Techn., vol. 60, no. 6, pp. 1952-1963, Jun. 2012.
[60] V. Carrubba et al., "Exploring the design space for broadband pas using the novel “continuous inverse class-F mode”," 2011 41st European Microwave Conference, Manchester, Oct. 2011, pp. 333-336.
[61] V. Carrubba et al., "The continuous inverse class-F mode with resistive second-harmonic impedance," IEEE Trans. Microw. Theory Techn., vol. 60, no. 6, pp. 1928-1936, Jun. 2012.
[62] K. Chen and D. Peroulis, "Design of broadband highly efficient harmonic-tuned power amplifier using in-band continuous class- F−1/F mode transferring," IEEE Trans. Microw. Theory Techn., vol. 60, no. 12, pp. 4107-4116, Dec. 2012.
[63] X. Sun, X. Zhu, Y. Wang, P.-L. Chi and T. Yang, "A 2W 9.5-16.5 GHz GaN power amplifier with 30% PAE using transformer-based output matching network," in IEEE MTT-S Int Microw. Symp. Dig., Jun. 2023, pp. 319-322.
[64] G. Nikandish, R. B. Staszewski and A. Zhu, "Design of highly linear broadband continuous mode GaN MMIC power amplifiers for 5G," IEEE Access, vol. 7, pp. 57138-57150, 2019.
[65] V. Puyal et al., "A broad-band 55-nm BiCMOS T/R switch for mmW 5G small cell access point," 2016 14th IEEE International New Circuits and Systems Conference (NEWCAS), Jun. 2016, pp. 1-4.
[66] https://www.anokiwave.com/products/awmf-0188/index.html.
[67] https://www.analog.com/en/products/admv1013.html.
[68] https://www.analog.com/en/index.html.
[69] https://www.analog.com/en/products/admv1014.html.
[70] https://www.analog.com/en/products/hmc572lc5.html.
[71] https://www.st.com/en/wireless-connectivity/bal-uwb-01e3.html.
[72] M. Grady, J. M. Kovitz, A. Iancovici and Y. Borenstein, "Improved bandwidth using a 3D Printed quasi-ideal grounded coplanar waveguide transmission line," 2022 IEEE 22nd Annual Wireless and Microwave Technology Conference (WAMICON), Apr. 2022, pp. 1-4.
[73] W. Deng, R. Wu, Z. Chen, M. Ding, H. Jia and B. Chi, "A 35-GHz TX and RX front end with high TX output power for Ka-band FMCW phased-array radar transceivers in CMOS technology," in IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 10, pp. 2089-2098, Oct. 2020.
[74] Y. Wang et al., "A 39-GHz 64-element phased-array transceiver with built-in phase and amplitude calibrations for large-array 5G NR in 65-nm CMOS," IEEE J. Solid-State Circuits, vol. 55, no. 5, pp. 1249-1269, May 2020.
[75] H. .-C. Park et al., "4.1 A 39GHz-band CMOS 16-Channel phased-array transceiver IC with a companion dual-stream IF transceiver IC for 5G NR base-station applications," in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2020, pp. 76-78.
[76] H.-T. Kim et al., "A 28GHz CMOS direct conversion transceiver with packaged antenna arrays for 5G cellular system," in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2017, pp. 69-72.
[77] Y. Wang, H.-T. Hsu, A. Desai and Y. -F. Tsao, "Design of a compact RF front-end transceiver module for 5G new-radio applications," IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1-9, 2023.
[78] J. Pang et al., "A 28-GHz CMOS phased-array transceiver based on LO phase-shifting architecture with gain invariant phase tuning for 5G new radio," IEEE J. Solid-State Circuits, vol. 54, no. 5, pp. 1228-1242, May 2019.
[79] J. Zhang et al., "An ultra-compact bidirectional Ka-band front-end module with 3.8-dB NF and 13.5-dBm OP1 dB," IEEE Microwave and Wireless Technology Letters, vol. 33, no. 1, pp. 70-73, Jan. 2023.
[80] F. Quadrelli et al., "A broadband 22–31-GHz bidirectional image-reject up/down converter module in 28-nm CMOS for 5G communications," IEEE J. Solid-State Circuits, vol. 57, no. 7, pp. 1968-1981, Jul. 2022.
[81] Z. Luo, H. Chen, W. Che and Q. Xue, "Study of 28 GHz transceiver module integrated with LO source for 5G mmWave communication," 2020 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Jul. 2020, pp. 1-3.
[82] Yinqiao Li, Le Hu, Zheng Xu and Jianming Zhou, "A Ka-band transceiver module based on LTCC technology," 2015 IEEE 6th International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE), Aug. 2015, pp. 600-603.
[83] Dong-Wuk Park, Gyoung-Hun Gwag, Hyuk-Jun Oh, Ik-mo Park and Yun-Seong Eo, "28 GHz RF transceiver module for 5G beam-forming system," in Asia-Pacific Microw. Conf., Dec. 2016, pp. 1-4. |