參考文獻 |
[1] “Mobile OS market share worldwide 2009-2023,” Statista. Accessed: Mar. 13, 2024. [Online]. Available: https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
[2] S. Hou, Y. Ye, Y. Song, and M. Abdulhayoglu, “HinDroid: An Intelligent Android Malware Detection System Based on Structured Heterogeneous Information Network,” in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, in KDD ’17. New York, NY, USA: Association for Computing Machinery, Aug. 2017, pp. 1507–1515. doi: 10.1145/3097983.3098026.
[3] T. Gao, W. Peng, D. Sisodia, T. K. Saha, F. Li, and M. Al Hasan, “Android Malware Detection via Graphlet Sampling,” IEEE Trans. Mob. Comput., vol. 18, no. 12, pp. 2754–2767, Feb. 2019, doi: 10.1109/TMC.2018.2880731.
[4] Y. Wu, X. Li, D. Zou, W. Yang, X. Zhang, and H. Jin, “MalScan: Fast Market-Wide Mobile Malware Scanning by Social-Network Centrality Analysis,” in 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), Jan. 2019, pp. 139–150. doi: 10.1109/ASE.2019.00023.
[5] X. Zhang et al., “Enhancing State-of-the-art Classifiers with API Semantics to Detect Evolved Android Malware,” in Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, in CCS ’20. New York, NY, USA: Association for Computing Machinery, Nov. 2020, pp. 757–770. doi: 10.1145/3372297.3417291.
[6] T. S. John, T. Thomas, and S. Emmanuel, “Graph Convolutional Networks for Android Malware Detection with System Call Graphs,” in 2020 Third ISEA Conference on Security and Privacy (ISEA-ISAP), Feb. 2020, pp. 162–170. doi: 10.1109/ISEA-ISAP49340.2020.235015.
[7] V. K. V and J. C. D, “Android Malware Detection using Function Call Graph with Graph Convolutional Networks,” in 2021 2nd International Conference on Secure Cyber Computing and Communications (ICSCCC), May 2021, pp. 279–287. doi: 10.1109/ICSCCC51823.2021.9478141.
[8] Y. Yang, X. Du, Z. Yang, and X. Liu, “Android Malware Detection Based on Structural Features of the Function Call Graph,” Electronics, vol. 10, no. 2, Art. no. 2, Jan. 2021, doi: 10.3390/electronics10020186.
[9] F. Deldar, M. Abadi, and M. Ebrahimifard, “Android Malware Detection Using Supervised Deep Graph Representation Learning,” in 2022 12th International Conference on Computer and Knowledge Engineering (ICCKE), Jan. 2022, pp. 348–354. doi: 10.1109/ICCKE57176.2022.9960076.
[10] H. Wu, N. Luktarhan, G. Tian, and Y. Song, “An Android Malware Detection Approach to Enhance Node Feature Differences in a Function Call Graph Based on GCNs,” Sensors, vol. 23, no. 10, Art. no. 10, Jan. 2023, doi: 10.3390/s23104729.
[11] 楊蕙瑄 and Yang H.-H., “結合函式呼叫圖語意特徵及域適應技術之Android 抗混淆惡意軟體檢測模型研究;A Research of Android Anti-Obfuscated Malware Detection Combined with Function Call Graph Semantic Feature and Domain Adaptation,” thesis, 國立中央大學, 2023. Accessed: Jun. 11, 2024. [Online]. Available: https://ir.lib.ncu.edu.tw/handle/987654321/92666
[12] X. Lu, J. Zhao, S. Zhu, and P. Lio, “SNDGCN: Robust Android malware detection based on subgraph network and denoising GCN network,” Expert Syst. Appl., vol. 250, p. 123922, Sep. 2024, doi: 10.1016/j.eswa.2024.123922.
[13] Z. Liu, R. Wang, N. Japkowicz, H. M. Gomes, B. Peng, and W. Zhang, “SeGDroid: An Android malware detection method based on sensitive function call graph learning,” Expert Syst. Appl., vol. 235, p. 121125, Jan. 2024, doi: 10.1016/j.eswa.2023.121125.
[14] H. Li et al., “Black-box adversarial example attack towards FCG based android malware detection under incomplete feature information,” in Proceedings of the 32nd USENIX Conference on Security Symposium, in SEC ’23. USA: USENIX Association, Aug. 2023, pp. 1181–1198.
[15] H. Bostani and V. Moonsamy, “EvadeDroid: A practical evasion attack on machine learning for black-box Android malware detection,” Comput. Secur., vol. 139, p. 103676, Apr. 2024, doi: 10.1016/j.cose.2023.103676.
[16] T. Bai, J. Luo, J. Zhao, B. Wen, and Q. Wang, “Recent Advances in Adversarial Training for Adversarial Robustness,” presented at the Twenty-Ninth International Joint Conference on Artificial Intelligence, Aug. 2021, pp. 4312–4321. doi: 10.24963/ijcai.2021/591.
[17] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro, “Intriguing Properties of Adversarial ML Attacks in the Problem Space,” presented at the 2020 IEEE Symposium on Security and Privacy (SP), IEEE Computer Society, May 2020, pp. 1332–1349. doi: 10.1109/SP40000.2020.00073.
[18] K. Zhao et al., “Structural Attack against Graph Based Android Malware Detection,” in Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, in CCS ’21. New York, NY, USA: Association for Computing Machinery, Nov. 2021, pp. 3218–3235. doi: 10.1145/3460120.3485387.
[19] Z. Shu and G. Yan, “EAGLE: Evasion Attacks Guided by Local Explanations against Android Malware Classification,” IEEE Trans. Dependable Secure Comput., pp. 1–18, 2023, doi: 10.1109/TDSC.2023.3324265.
[20] X. Chen et al., “Android HIV: A Study of Repackaging Malware for Evading Machine-Learning Detection,” IEEE Trans. Inf. Forensics Secur., vol. 15, pp. 987–1001, Jan. 2020, doi: 10.1109/TIFS.2019.2932228.
[21] L. Onwuzurike, E. Mariconti, P. Andriotis, E. D. Cristofaro, G. Ross, and G. Stringhini, “MaMaDroid: Detecting Android Malware by Building Markov Chains of Behavioral Models (Extended Version),” ACM Trans. Priv. Secur., vol. 22, no. 2, p. 14:1-14:34, Apr. 2019, doi: 10.1145/3313391.
[22] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harnessing Adversarial Examples,” CoRR, Dec. 2014, Accessed: Jun. 02, 2024. [Online]. Available: https://www.semanticscholar.org/paper/Explaining-and-Harnessing-Adversarial-Examples-Goodfellow-Shlens/bee044c8e8903fb67523c1f8c105ab4718600cdb
[23] C. Szegedy et al., “Going deeper with convolutions,” presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society, Jun. 2015, pp. 1–9. doi: 10.1109/CVPR.2015.7298594.
[24] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C. Siemens, “Drebin: Effective and explainable detection of android malware in your pocket.,” in Ndss, 2014, pp. 23–26.
[25] “Mobile Security Framework - MobSF Documentation,” Mobile Security Framework - MobSF Documentation. Accessed: Mar. 13, 2024. [Online]. Available: https://mobsf.github.io/docs/
[26] A. Grover and J. Leskovec, “node2vec: Scalable Feature Learning for Networks,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, in KDD ’16. New York, NY, USA: Association for Computing Machinery, Aug. 2016, pp. 855–864. doi: 10.1145/2939672.2939754.
[27] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” presented at the International Conference on Learning Representations, Jan. 2013. Accessed: Jun. 12, 2024. [Online]. Available: https://www.semanticscholar.org/paper/Efficient-Estimation-of-Word-Representations-in-Mikolov-Chen/f6b51c8753a871dc94ff32152c00c01e94f90f09
[28] H. Yuan, H. Yu, S. Gui, and S. Ji, “Explainability in Graph Neural Networks: A Taxonomic Survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 05, pp. 5782–5799, May 2023, doi: 10.1109/TPAMI.2022.3204236.
[29] P. E. Pope, S. Kolouri, M. Rostami, C. E. Martin, and H. Hoffmann, “Explainability Methods for Graph Convolutional Neural Networks,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2019, pp. 10764–10773. doi: 10.1109/CVPR.2019.01103.
[30] “GNNExplainer | Proceedings of the 33rd International Conference on Neural Information Processing Systems,” Guide Proceedings. Accessed: Jun. 02, 2024. [Online]. Available: https://dl.acm.org/doi/10.5555/3454287.3455116
[31] D. Luo et al., “Parameterized explainer for graph neural network,” in Proceedings of the 34th International Conference on Neural Information Processing Systems, in NIPS ’20. Red Hook, NY, USA: Curran Associates Inc., Dec. 2020, pp. 19620–19631.
[32] H. Yuan, H. Yu, J. Wang, K. Li, and S. Ji, “On Explainability of Graph Neural Networks via Subgraph Explorations,” presented at the International Conference on Machine Learning, Feb. 2021. Accessed: Jun. 12, 2024. [Online]. Available: https://www.semanticscholar.org/paper/On-Explainability-of-Graph-Neural-Networks-via-Yuan-Yu/123139463809b5acf98b95d4c8e958be334a32b5
[33] F. Baldassarre and H. Azizpour, “Explainability Techniques for Graph Convolutional Networks,” ArXiv, May 2019, Accessed: Jun. 12, 2024. [Online]. Available: https://www.semanticscholar.org/paper/Explainability-Techniques-for-Graph-Convolutional-Baldassarre-Azizpour/8fb202cdcfec3b0e7ba0e3f88949d6d923b48b2d
[34] T. Schnake et al., “Higher-Order Explanations of Graph Neural Networks via Relevant Walks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 11, pp. 7581–7596, Jan. 2022, doi: 10.1109/TPAMI.2021.3115452.
[35] Q. Huang, M. Yamada, Y. Tian, D. Singh, and Y. Chang, “GraphLIME: Local Interpretable Model Explanations for Graph Neural Networks,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 7, pp. 6968–6972, Jul. 2023, doi: 10.1109/TKDE.2022.3187455.
[36] H. Yuan, J. Tang, X. Hu, and S. Ji, “XGNN: Towards Model-Level Explanations of Graph Neural Networks,” Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 430–438, Aug. 2020, doi: 10.1145/3394486.3403085.
[37] N. Akhtar, A. Mian, N. Kardan, and M. Shah, “Advances in Adversarial Attacks and Defenses in Computer Vision: A Survey,” IEEE Access, vol. 9, pp. 155161–155196, 2021, doi: 10.1109/ACCESS.2021.3127960.
[38] P. Bountakas, A. Zarras, A. Lekidis, and C. Xenakis, “Defense strategies for Adversarial Machine Learning: A survey,” Comput. Sci. Rev., vol. 49, p. 100573, Aug. 2023, doi: 10.1016/j.cosrev.2023.100573.
[39] “Welcome to Androguard’s documentation! — Androguard 3.4.0 documentation.” Accessed: Mar. 13, 2024. [Online]. Available: https://androguard.readthedocs.io/en/latest/
[40] M. Backes, S. Bugiel, E. Derr, P. McDaniel, D. Octeau, and S. Weisgerber, “On Demystifying the Android Application Framework: {Re-Visiting} Android Permission Specification Analysis,” presented at the 25th USENIX Security Symposium (USENIX Security 16), 2016, pp. 1101–1118. Accessed: Mar. 13, 2024. [Online]. Available: https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/backes_android
[41] C. Zhao, W. Zheng, L. Gong, M. Zhang, and C. Wang, “Quick and Accurate Android Malware Detection Based on Sensitive APIs,” in 2018 IEEE International Conference on Smart Internet of Things (SmartIoT), Aug. 2018, pp. 143–148. doi: 10.1109/SmartIoT.2018.00034.
[42] P. J. M. van Laarhoven and E. H. L. Aarts, “Simulated annealing,” in Simulated Annealing: Theory and Applications, P. J. M. van Laarhoven and E. H. L. Aarts, Eds., Dordrecht: Springer Netherlands, 1987, pp. 7–15. doi: 10.1007/978-94-015-7744-1_2.
[43] D. B. Skalak, “Prototype and Feature Selection by Sampling and Random Mutation Hill Climbing Algorithms,” in Machine Learning Proceedings 1994, W. W. Cohen and H. Hirsh, Eds., San Francisco (CA): Morgan Kaufmann, 1994, pp. 293–301. doi: 10.1016/B978-1-55860-335-6.50043-X.
[44] “Welcome to Deep Graph Library Tutorials and Documentation — DGL 2.1.0 documentation.” Accessed: Mar. 13, 2024. [Online]. Available: https://docs.dgl.ai/index.html |