博碩士論文 110524031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:89 、訪客IP:18.119.119.252
姓名 葉軒宏(Xuan-Hong Ye)  查詢紙本館藏   畢業系所 網路學習科技研究所
論文名稱 結合生成式人工智慧與自然語言處理技術之合作科學探究想法收斂自動回饋鷹架開發與初步評估
(Development and Preliminary Evaluation of an Automatic Feedback Scaffolding for Idea Convergence in Collaborative Scientific Inquiry: Using Generative Artificial Intelligence and Natural Language Processing Techniques)
相關論文
★ 支援國小科展探究教與學之網路科展探究系統的開發與評估★ 教師科展專業知識分享社群平台系統開發與評估
★ 科學小論文寫作平台的建置與評估★ 「探究教學線上教師社群平台」之建置與評估:以知識管理理論為基礎
★ 科學閱讀平台之發展與評估★ 以鷹架為基礎之科展探究系統平台之開發與評估
★ Improving Novice Teachers’ Instructional Practice Through Online Multilevel Reflection: The Role of Novice Teachers’ Beliefs★ The Effect s of Video-based Reflection on Preservice Teachers′ Micro Teaching Focusing on Meaningful Learning with ICT
★ Examining Teachers’ Online Video-Based Reflective Practice for Professional Development Regarding Guided-Discovery Learning Instruction★ 數位教育遊戲之開發與評估:以「Mr.道耳頓的奇幻歷險」為例
★ 應用自然語言處理技術開發基於知識翻新理論之線上非同步合作論證平台與平台初步評估★ 同步討論與反思系統(SDRS)對小學生知識建構學習環境感知和學習成果的影響
★ 具有集成設計框架的同步在線論證系統用戶界面:重新設計和評估★ 科學探究學習系統之開發與評估
★ 支援科學專題學習 之線上學習平台開發與評估★ 線上合作共同備課平台:開發與評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-6以後開放)
摘要(中) 「合作探究學習」是強調學生共同參與問題解決、知識翻新和學習過程的模式。 這種學習方式有助於培養學生的批判思維、溝通能力和合作技能,推動知識的共享和 共建。教育部於 2018 年頒布了「十二年國民基本教育課程綱要」的自然科學領域課程 綱要中提及到自然科學課程應引導學生經由探究、閱讀及實作等方式,習得科學探究 能力、養成科學態度,以獲得對科學知識內容的理解與應用能力,可以發現「探究學 習」所扮演的重要角色。同時,隨著近年人工智慧及「自然語言處理技術」的快速發 展,人工智慧在各領域的應用越來越廣泛。其中,聊天機器人作為學習夥伴在教育中 的應用也逐漸受到重視,在 AI 聊天機器人作為學習夥伴的背後,自然語言處理技術扮 演了至關重要的角色。因此本研究結合了自然言處理技術,訓練出基於知識翻新任務 的聊天機器人,幫助及引導學生進行「想法收斂」的過程,我們透過聊天機器人作為 學習夥伴與學生進行互動,促進學生在合作探究學習上的知識翻新,以達成學生的反 思和深入討論,進而提升探究學習的成效。本研究以台灣北部某具備知識翻新教學與 科學探究教學豐富經驗之國小現場教師為對象,主要採用問卷調查法,評估本研究鷹 架在合作科學探究學習想法收斂的適用性。對實驗後的問卷資料進行統計分析與討論, 根據統計及分析的結果得以發現本研究鷹架在教學現場中具有實際成效。透過結果再 進一步改善系統,使系統更加符合教學現場。
摘要(英) "Collaborative inquiry-based learning" emphasizes students′ joint participation in problem-solving, knowledge innovation, and the learning process. This approach helps develop critical thinking, communication skills, and collaboration abilities, promoting knowledge sharing and co-construction. With the rapid development of artificial intelligence (AI) and natural language processing (NLP) technologies, AI applications have become increasingly widespread. The use of chatbots as learning partners in education has gained considerable attention, with NLP technology playing a crucial role. This study integrates NLP technology to develop a chatbot based on knowledge innovation tasks, aimed at assisting and guiding students through idea generation and convergence. By interacting with students, the chatbot facilitates knowledge innovation in collaborative inquiry-based learning, leading to reflection and in depth discussion, ultimately enhancing the effectiveness of inquiry-based learning. The study involved 56 fifth-grade students from an elementary school in northern Taiwan. A questionnaire survey method was used to evaluate the system′s perceived usefulness, ease of use, and willingness to use. Statistical analysis of the questionnaire data revealed positive responses from the students. Based on their suggestions and feedback, further improvements were made to the system to better suit classroom teaching needs.
關鍵字(中) ★ 生成式人工智慧
★ 自然語言處理
★ 知識翻新理論
★ 科學探究
★ 探究學習
★ 學習夥伴
關鍵字(英) ★ generative artificial intelligence (GAI)
★ natural language processing (NLP)
★ knowledge building
★ scientific inquiry
★ inquiry learning
★ learning companion
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 IV
表目錄 X
圖目錄 XI
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
一、開發基於「自然語言處理」技術的「想法收斂自動回饋鷹架」,並整合至「合作探究學習平台」 3
二、對已完成開發的「想法收斂自動回饋鷹架」進行初步評估 3
第三節 研究問題 5
一、「合作科學探究想法收斂自動回饋鷹架」之自然語言模型成效為何? 5
二、「合作科學探究想法收斂自動回饋鷹架」之教學現場實用性為何? 5
第四節 名詞解釋 6
一、科學探究(Scientific Inquiry) 6
二、知識翻新(Knowledge Building) 6
三、學習夥伴(Learning Companion) 6
四、自然語言處理(Natural Language Processing, NLP) 7
第五節 研究範圍與限制 7
第二章 文獻探討 8
第一節 科學探究與探究學習 8
一、科學探究 8
二、探究的四個層次 8
三、探究學習 10
四、小結 10
第二節 知識翻新理論 12
一、知識翻新理論 12
二、知識翻新的理論框架 12
三、想法收斂與 Promising Idea 15
四、Meta-Talk 在知識翻新中的應用 16
五、知識翻新教學的挑戰與前景 17
第三節 學習夥伴 18
一、傳統聊天機器人 18
二、聊天機器人作為學習夥伴 18
三、聊天機器人作為學習夥伴與傳統聊天機器人的差異 18
四、學習夥伴的角色 19
五、小結 20
第三節 自然語言處理 21
一、大型語言模型(Large Language Model, LLM) 21
二、預訓練語言模型 23
三、模型量化 27
四、LoRA 29
五、生成式人工智慧(GAI)與文本生成技術 33
六、文本相似度計算 36
七、向量檢索 38
八、檢索增強生成 40
九、自然語言生成在教育中的應用 43
十、小結 44
第四節 相關系統介紹以及分析與比較 45
一、相關系統介紹 45
二、相關平台與工具之分析與比較 49
第五節 總結 51
第三章 系統設計與實作 52
第一節 系統開發方式 52
一、系統開發人員架構 52
二、系統開發流程 53
第二節 系統設計與規劃 55
一、系統範圍 55
二、系統功能模組 56
三、系統使用案例 59
四、系統使用流程 59
五、系統架構 60
第三節 邏輯與資料處理接口實作 62
一、資料流流程規劃 62
二、後端 API 之設計與實作 63
三、資料庫設計 66
第四節 自然語言處理實作 68
一、資料準備與前處理 68
二、訓練環境與軟硬體配置 72
三、向量相似度訓練實作 76
四、想法摘要訓練實作 78
五、探究方向生成訓練實作 82
第五節 系統介面與功能 83
一、小組聊天室結合 AI 學伴 83
二、想法警示鷹架 84
三、想法摘要鷹架 85
四、探究方向鷹架 86
第六節 系統配置 87
一、硬體設備與環境 87
二、軟體建置 87
三、使用環境建議 88
第四章 研究方法 89
第一節 研究對象 90
一、受測者基本資料 90
第二節 研究流程 91
一、施測及評估階段 91
二、結果分析階段 91
第三節 鷹架評估流程 92
一、資料蒐集與整理 92
二、評測資料生成 92
三、鷹架功能評測 93
第四節 研究工具 94
一、ROUGE-SU9 自動化評估工具 94
二、學生對於「合作科學探究想法收斂自動回饋鷹架」之想法摘要摘要質量量表 94
三、教師對於「合作科學探究想法收斂自動回饋鷹架」之探究方向適用性比較五點量表 96
第五節 資料收集與分析 97
一、資料收集 97
二、資料分析 97
第五章 研究結果與討論 98
第一節 「合作科學探究想法收斂自動回饋鷹架」之自然語言模型成效為何? 98
一、「合作科學探究想法收斂自動回饋鷹架」之想法摘要模型成效為何? 98
第二節 「合作科學探究想法收斂自動回饋鷹架」之教學現場實用性為何? 102
一、「合作科學探究想法收斂自動回饋鷹架」之探究方向生成適用性為何? 102
第六章 結論與建議 105
第一節 研究結論 105
一、「合作科學探究想法收斂自動回饋鷹架」之自然語言模型在文本生成任務中具有一定能力 105
二、「合作科學探究想法收斂自動回饋鷹架」在教學現場中具有實際成效 105
第二節 研究建議 107
一、鷹架功能改善建議 107
二、未來研究建議 107
參考文獻 109
附錄 116
附錄一 「合作科學探究想法收斂自動回饋鷹架」之想法摘要模型摘要質量量表例題 116
附錄二 教師對於「合作科學探究想法收斂自動回饋鷹架」之探究方向生成適用性比較五點量表例題 117
參考文獻 教育部. (2014). 十二年國民基本教育課程綱要總綱. 臺北: 教育部
楊加豪. (2021). 結合自然語言技術的線上合作論證系統之開發與初步評估 國立中央大學]. 臺灣博碩士論文知識加值系統. 桃園縣. https://hdl.handle.net/11296/ta46h5
楊琇茹. (2024). 基於知識翻新理論之國小自然領域合作探究學習平台開發與初步評估 國立中央大學]. 桃園市. http://ir.lib.ncu.edu.tw/handle/987654321/93595
王君善. (2019). 應用自然語言處理技術開發基於知識翻新理論之線上非同步合作論證平台與平台初步評估 國立中央大學]. 臺灣博碩士論文知識加值系統. 桃園縣. https://hdl.handle.net/11296/gnkavf
Abd-El-Khalick, F., BouJaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., Niaz, M., Treagust, D., & Tuan, H.-l. (2004). Inquiry in science education: International perspectives. Science Education, 88(3), 397-419. https://doi.org/https://doi.org/10.1002/sce.10118
Ahuja, K., Hada, R., Ochieng, M., Jain, P., Diddee, H., Ramesh, K., Maina, S., Ganu, T., Segal, S., Axmed, M., Bali, K., & Sitaram, S. (2023). MEGA: Multilingual Evaluation of Generative AI. ArXiv, abs/2303.12528.
Alhawiti, K. M. (2014). Natural Language Processing and its Use in Education. International Journal of Advanced Computer Science and Applications, 5.
Bandyopadhyay, T., Saha, S., & Pal, D. (2023). Beyond Imitation: Exploring Novelty in Generative AI. International Journal of Advanced Research in Science, Communication and Technology.
Bereiter, C. (2002a). Education and Mind in the Knowledge Age. https://doi.org/10.4324/9781410612182
Bereiter, C. (2002b). Education and mind in the Knowledge Age. Lawrence Erlbaum Associates Publishers.
Bereiter, C., Scardamalia, M., Cassells, C., & Hewitt, J. (1997). Postmodernism, Knowledge Building, and Elementary Science. The Elementary School Journal, 97, 329-340. https://doi.org/10.1086/461869
Bielaczyc, K., & Collins, A. (1999). Learning communities in classrooms: A reconceptualization of educational practice. Instructional-design theories and models: A new paradigm of instructional theory.
Bisen, W. H., & Agrawal, A. J. (2022). review on natural language generation. International journal of health sciences.
Blumenfeld, P. C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M., & Palincsar, A. (1991). Motivating Project-Based Learning: Sustaining the Doing, Supporting the Learning. Educational Psychologist, 26(3-4), 369-398. https://doi.org/10.1080/00461520.1991.9653139
Chang, L., Chen, Q., Yang, Y., & Qian, X. (2019). DEVELOPING A PRODUCTIVE KNOWLEDGE-BUILDING DISCOURSE THROUGH JUDGMENTS OF PROMISING IDEAS AND EPISTEMIC REFLECTION. Proceedings of the 6th International Conference on Educational Technologies 2019.
Chen, J., Lin, H., Han, X., & Sun, L. (2023). Benchmarking Large Language Models in Retrieval-Augmented Generation. AAAI Conference on Artificial Intelligence,
Cheng-chen, S. (2014). Text Similarity Calculation Based on Search System. Computer Knowledge and Technology.
Chitty-Venkata, K. T., Emani, M. K., Vishwanath, V., & Somani, A. (2022). Neural Architecture Search for Transformers: A Survey. IEEE Access, 10, 108374-108412.
Council, N. R. (2000). Inquiry and the National Science Education Standards: A Guide for Teaching and Learning. The National Academies Press. https://doi.org/doi:10.17226/9596
Dande, A., & Pund, D. (2023). A Review Study on Applications of Natural Language Processing. International Journal of Scientific Research in Science, Engineering and Technology, 122-126. https://doi.org/10.32628/IJSRSET2310214
Evstropov, A. M., Tarlakovskaya, E. A., & Sidorov, I. A. (2023). Neural network architecture «transformer»: Artificial Intelligence and its role in Natural Language Processing. ТЕНДЕНЦИИ РАЗВИТИЯ НАУКИ И ОБРАЗОВАНИЯ.
Gardent, C., & Narayan, S. (2018). Deep Learning Approaches to Text Production. Computational Linguistics, 46, 899-903.
Gillioz, A., Casas, J., Mugellini, E., & Abou Khaled, O. (2020). Overview of the Transformer-based Models for NLP Tasks. 2020 15th Conference on Computer Science and Information Systems (FedCSIS), 179-183.
Goodman, B. A., Linton, F., & Gaimari, R. (2015). Encouraging Student Reflection and Articulation Using a Learning Companion: A Commentary. International Journal of Artificial Intelligence in Education, 26, 474 - 488.
Hirschberg, J., & Manning, C. D. (2015). Advances in natural language processing. Science, 349(6245), 261-266. https://doi.org/10.1126/science.aaa8685
Hong, H.-Y., & Sullivan, F. (2009). An idea-centered, principle-based design approach to support learning as knowledge creation. Educational Technology Research and Development, 57, 613-627. Educational Technology Research and Development, 57, 613-627. https://doi.org/10.1007/s11423-009-9122-0
Hu, J. E., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., & Chen, W. (2021). LoRA: Low-Rank Adaptation of Large Language Models. ArXiv, abs/2106.09685.
Jurafsky, D., & Martin, J. (2008). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition (Vol. 2).
Karyotaki, M., Drigas, A., & Skianis, C. (2022). Chatbots as Cognitive, Educational, Advisory & Coaching Systems. Technium Social Sciences Journal.
Krajcik, J. S., & Blumenfeld, P. C. (2005). Project-Based Learning. In R. K. Sawyer (Ed.), The Cambridge Handbook of the Learning Sciences (pp. 317-334). Cambridge University Press. https://doi.org/DOI: 10.1017/CBO9780511816833.020
Kuhail, M. A., Alturki, N., Alramlawi, S., & Alhejori, K. (2022). Interacting with educational chatbots: A systematic review. Education and Information Technologies, 28, 1-46. https://doi.org/10.1007/s10639-022-11177-3
Kuhn, D. (2010). What is Scientific Thinking and How Does it Develop? In (pp. 497-523). https://doi.org/10.1002/9781444325485.ch19
Lederman, N. (2014). Lederman, N.G., & Lederman, J.S. (2014). Research on Teaching and Learning of Nature of Science. In N. G. Lederman & S. K. Abell (Eds.), Handbook of Research on Science Education, Volume II (pp. 600-620). New York, NY: Routledge. In.
Lee, J., Kim, M., Baek, S., Hwang, S. J., Sung, W., & Choi, J. (2023). Enhancing Computation Efficiency in Large Language Models through Weight and Activation Quantization. ArXiv, abs/2311.05161.
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Kuttler, H., Lewis, M., Yih, W.-t., Rocktäschel, T., Riedel, S., & Kiela, D. (2020). Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. ArXiv, abs/2005.11401.
Li, P. J., Hong, H. Y., Chai, C. S., Tsai, C. C., & Lin, P. Y. (2020). Fostering Students′ Scientific Inquiry through Computer-Supported Collaborative Knowledge Building. Research in Science Education, 50(5), 2035-2053. https://doi.org/10.1007/s11165-018-9762-3
Li, Y., Yu, Y., Liang, C., He, P., Karampatziakis, N., Chen, W., & Zhao, T. (2023). LoftQ: LoRA-Fine-Tuning-Aware Quantization for Large Language Models. ArXiv, abs/2310.08659.
Liang, X., Lihua, T., & Chen, L. (2021). TCTG:A Controllable Text Generation Method Using Text to Control Text Generation. 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP), 1118-1122.
Liao, C.-Y. (2023). Design a Writing Learning Companion Chatbot based on a Knowledge Graph to Help Primary School Students Practice Writing Skill. 2023 14th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), 691-692.
Lin, C.-Y. (2004). ROUGE: A Package for Automatic Evaluation of summaries.
Liu, Y., & Li, Z. (2016). Semantic Based Text Similarity Computation.
Manathunga, S. S., & Illangasekara, Y. A. (2023). Retrieval Augmented Generation and Representative Vector Summarization for large unstructured textual data in Medical Education. ArXiv, abs/2308.00479.
Manning, C., Utze, H., & Lee, L. (2000). Foundations of Statistical Natural Language Processing.
McKenney, S. (2006). Book review: Internet Environments for Science Education / by M. Linn, E. Davis & P. Bell (eds.), London, Lawrence Erlbaum Associates, ISBN 0-8058-4303-5. International Journal of Science Education - INT J SCI EDUC, 95-98.
Mendoza, S., Hernández-León, M., Sánchez-Adame, L. M., Rodríguez, J., Decouchant, D., & Meneses-Viveros, A. (2020). Supporting Student-Teacher Interaction Through a Chatbot. Interacción,
Minstrell, J. M., & Zee, E. H. v. (2000). Inquiring into Inquiry Learning and Teaching in Science.
Naveed, H., Khan, A. U., Qiu, S., Saqib, M., Anwar, S., Usman, M., Barnes, N., & Mian, A. S. (2023). A Comprehensive Overview of Large Language Models. ArXiv, abs/2307.06435.
Phuong, M., & Hutter, M. (2022). Formal Algorithms for Transformers. ArXiv, abs/2207.09238.
Platt, M., & Platt, D. (2023). Effectiveness of Generative Artificial Intelligence for Scientific Content Analysis. 2023 IEEE 17th International Conference on Application of Information and Communication Technologies (AICT), 1-4.
Ranzato, M. A., Chopra, S., Auli, M., & Zaremba, W. (2015). Sequence Level Training with Recurrent Neural Networks. CoRR, abs/1511.06732.
Resendes, M., Scardamalia, M., Bereiter, C., Chen, B., & Halewood, C. (2015). Group-level formative feedback and metadiscourse. International Journal of Computer-Supported Collaborative Learning, 10, 309-336. https://doi.org/10.1007/s11412-015-9219-x
Ruiz-Primo, M. A., Shavelson, R. J., Hamilton, L., & Klein, S. (2002). On the evaluation of systemic science education reform: Searching for instructional sensitivity. Journal of Research in Science Teaching, 39(5), 369-393. https://doi.org/https://doi.org/10.1002/tea.10027
Rygl, J., Pomikálek, J., Rehurek, R., Růžička, M., Novotný, V., & Sojka, P. (2017). Semantic Vector Encoding and Similarity Search Using Fulltext Search Engines. Rep4NLP@ACL,
Scardamalia, M., & Bereiter, C. (1991). Higher Levels of Agency for Children in Knowledge Building: A Challenge for the Design of New Knowledge Media. Journal of the Learning Sciences, 1(1), 37-68. https://doi.org/10.1207/s15327809jls0101_3
Scardamalia, M., & Bereiter, C. (2006). Knowledge building: Theory, pedagogy, and technology. In (pp. 97). https://doi.org/10.1017/CBO9781139519526.025
Seeber, I., Vreede, G.-J. d., Maier, R. K., & Weber, B. (2017). Beyond Brainstorming: Exploring Convergence in Teams. Journal of Management Information Systems, 34, 939 - 969.
Shahmirzadi, O., Lugowski, A., & Younge, K. (2018). Text Similarity in Vector Space Models: A Comparative Study. 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), 659-666.
Shahul, E., James, J., Anke, L. E., & Schockaert, S. (2023). RAGAs: Automated Evaluation of Retrieval Augmented Generation. Conference of the European Chapter of the Association for Computational Linguistics,
Steinberger, J., & Jezek, K. (2009). Evaluation Measures for Text Summarization. Computing and Informatics, 28, 251-275.
Stowe, K., Ghosh, D., & Zhao, M. (2022). Controlled Language Generation for Language Learning Items. Conference on Empirical Methods in Natural Language Processing,
Stupina, M., & Paniotova, V. (2023). An Educational Chatbot in a Blended Learning Environment. 2023 3rd International Conference on Technology Enhanced Learning in Higher Education (TELE), 276-279.
Sun, M., Wang, M., & Wegerif, R. (2020). Effects of divergent thinking training on students’ scientific creativity: The impact of individual creative potential and domain knowledge. Thinking Skills and Creativity, 37, 100682. https://doi.org/10.1016/j.tsc.2020.100682
Tan, B., Yang, Z., Al-Shedivat, M., Xing, E. P., & Hu, Z. (2021). Progressive Generation of Long Text with Pretrained Language Models. North American Chapter of the Association for Computational Linguistics,
Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., & J′egou, H. e. (2021). Going deeper with Image Transformers. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 32-42.
Vázquez-Cano, E., Mengual-Andres, S., & Meneses, E. (2021). Chatbot to improve learning punctuation in Spanish and to enhance open and flexible learning environments. International Journal of Educational Technology in Higher Education, 18. https://doi.org/10.1186/s41239-021-00269-8
Wang, J., & Dong, Y. (2020). Measurement of Text Similarity: A Survey. Inf., 11, 421.
Wang, T., Lund, B., Marengo, A., Pagano, A., Mannuru, N. R., Teel, Z. A., & Pange, J. (2023). Exploring the Potential Impact of Artificial Intelligence (AI) on International Students in Higher Education: Generative AI, Chatbots, Analytics, and International Student Success. Applied Sciences, 13, 6716. https://doi.org/10.3390/app13116716
Wu, E. H.-K., Lin, C.-H., Ou, Y.-Y., Liu, C.-Z., Wang, W.-K., & Chao, C.-Y. (2020). Advantages and Constraints of a Hybrid Model K-12 E-Learning Assistant Chatbot. IEEE Access, 8, 77788-77801.
Xu, J., Yu, J., Hu, S., Liu, X., & Meng, H. M. (2021). Mixed Precision Low-Bit Quantization of Neural Network Language Models for Speech Recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29, 3679-3693.
Yu, J., Cristea, A. I., Harit, A., Sun, Z., Aduragba, O. T., Shi, L., & Moubayed, N. A. (2022). INTERACTION: A Generative XAI Framework for Natural Language Inference Explanations. 2022 International Joint Conference on Neural Networks (IJCNN), 1-8.
Zhang, J., Hong, H.-Y., Scardamalia, M., Teo, C.-L., & Morley, E. (2011). Sustaining Knowledge Building as a Principle-Based Innovation at an Elementary School. The Journal of the Learning Sciences, 20, 262-307. https://doi.org/10.2307/41305913
Zhang, J., Scardamalia, M., Reeve, R., & Messina, R. (2009). Designs for Collective Cognitive Responsibility in Knowledge-Building Communities. Journal of the Learning Sciences, 18(1), 7-44. https://doi.org/10.1080/10508400802581676
Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong, Z., Du, Y., Yang, C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li, Y., Tang, X., Liu, Z., . . . Wen, J.-r. (2023). A Survey of Large Language Models. ArXiv, abs/2303.18223.
Zhao, Y., & Frank, K. (2003). Factors Affecting Technology Uses in Schools: An Ecological Perspective. American Educational Research Journal, 40, 807-840. https://doi.org/10.3102/00028312040004807
Zhu, Q., & Luo, J. (2022). Generative Design Ideation: A Natural Language Generation Approach. ArXiv, abs/2204.09658.
指導教授 吳穎沺 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明