參考文獻 |
教育部. (2014). 十二年國民基本教育課程綱要總綱. 臺北: 教育部
楊加豪. (2021). 結合自然語言技術的線上合作論證系統之開發與初步評估 國立中央大學]. 臺灣博碩士論文知識加值系統. 桃園縣. https://hdl.handle.net/11296/ta46h5
楊琇茹. (2024). 基於知識翻新理論之國小自然領域合作探究學習平台開發與初步評估 國立中央大學]. 桃園市. http://ir.lib.ncu.edu.tw/handle/987654321/93595
王君善. (2019). 應用自然語言處理技術開發基於知識翻新理論之線上非同步合作論證平台與平台初步評估 國立中央大學]. 臺灣博碩士論文知識加值系統. 桃園縣. https://hdl.handle.net/11296/gnkavf
Abd-El-Khalick, F., BouJaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., Niaz, M., Treagust, D., & Tuan, H.-l. (2004). Inquiry in science education: International perspectives. Science Education, 88(3), 397-419. https://doi.org/https://doi.org/10.1002/sce.10118
Ahuja, K., Hada, R., Ochieng, M., Jain, P., Diddee, H., Ramesh, K., Maina, S., Ganu, T., Segal, S., Axmed, M., Bali, K., & Sitaram, S. (2023). MEGA: Multilingual Evaluation of Generative AI. ArXiv, abs/2303.12528.
Alhawiti, K. M. (2014). Natural Language Processing and its Use in Education. International Journal of Advanced Computer Science and Applications, 5.
Bandyopadhyay, T., Saha, S., & Pal, D. (2023). Beyond Imitation: Exploring Novelty in Generative AI. International Journal of Advanced Research in Science, Communication and Technology.
Bereiter, C. (2002a). Education and Mind in the Knowledge Age. https://doi.org/10.4324/9781410612182
Bereiter, C. (2002b). Education and mind in the Knowledge Age. Lawrence Erlbaum Associates Publishers.
Bereiter, C., Scardamalia, M., Cassells, C., & Hewitt, J. (1997). Postmodernism, Knowledge Building, and Elementary Science. The Elementary School Journal, 97, 329-340. https://doi.org/10.1086/461869
Bielaczyc, K., & Collins, A. (1999). Learning communities in classrooms: A reconceptualization of educational practice. Instructional-design theories and models: A new paradigm of instructional theory.
Bisen, W. H., & Agrawal, A. J. (2022). review on natural language generation. International journal of health sciences.
Blumenfeld, P. C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M., & Palincsar, A. (1991). Motivating Project-Based Learning: Sustaining the Doing, Supporting the Learning. Educational Psychologist, 26(3-4), 369-398. https://doi.org/10.1080/00461520.1991.9653139
Chang, L., Chen, Q., Yang, Y., & Qian, X. (2019). DEVELOPING A PRODUCTIVE KNOWLEDGE-BUILDING DISCOURSE THROUGH JUDGMENTS OF PROMISING IDEAS AND EPISTEMIC REFLECTION. Proceedings of the 6th International Conference on Educational Technologies 2019.
Chen, J., Lin, H., Han, X., & Sun, L. (2023). Benchmarking Large Language Models in Retrieval-Augmented Generation. AAAI Conference on Artificial Intelligence,
Cheng-chen, S. (2014). Text Similarity Calculation Based on Search System. Computer Knowledge and Technology.
Chitty-Venkata, K. T., Emani, M. K., Vishwanath, V., & Somani, A. (2022). Neural Architecture Search for Transformers: A Survey. IEEE Access, 10, 108374-108412.
Council, N. R. (2000). Inquiry and the National Science Education Standards: A Guide for Teaching and Learning. The National Academies Press. https://doi.org/doi:10.17226/9596
Dande, A., & Pund, D. (2023). A Review Study on Applications of Natural Language Processing. International Journal of Scientific Research in Science, Engineering and Technology, 122-126. https://doi.org/10.32628/IJSRSET2310214
Evstropov, A. M., Tarlakovskaya, E. A., & Sidorov, I. A. (2023). Neural network architecture «transformer»: Artificial Intelligence and its role in Natural Language Processing. ТЕНДЕНЦИИ РАЗВИТИЯ НАУКИ И ОБРАЗОВАНИЯ.
Gardent, C., & Narayan, S. (2018). Deep Learning Approaches to Text Production. Computational Linguistics, 46, 899-903.
Gillioz, A., Casas, J., Mugellini, E., & Abou Khaled, O. (2020). Overview of the Transformer-based Models for NLP Tasks. 2020 15th Conference on Computer Science and Information Systems (FedCSIS), 179-183.
Goodman, B. A., Linton, F., & Gaimari, R. (2015). Encouraging Student Reflection and Articulation Using a Learning Companion: A Commentary. International Journal of Artificial Intelligence in Education, 26, 474 - 488.
Hirschberg, J., & Manning, C. D. (2015). Advances in natural language processing. Science, 349(6245), 261-266. https://doi.org/10.1126/science.aaa8685
Hong, H.-Y., & Sullivan, F. (2009). An idea-centered, principle-based design approach to support learning as knowledge creation. Educational Technology Research and Development, 57, 613-627. Educational Technology Research and Development, 57, 613-627. https://doi.org/10.1007/s11423-009-9122-0
Hu, J. E., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., & Chen, W. (2021). LoRA: Low-Rank Adaptation of Large Language Models. ArXiv, abs/2106.09685.
Jurafsky, D., & Martin, J. (2008). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition (Vol. 2).
Karyotaki, M., Drigas, A., & Skianis, C. (2022). Chatbots as Cognitive, Educational, Advisory & Coaching Systems. Technium Social Sciences Journal.
Krajcik, J. S., & Blumenfeld, P. C. (2005). Project-Based Learning. In R. K. Sawyer (Ed.), The Cambridge Handbook of the Learning Sciences (pp. 317-334). Cambridge University Press. https://doi.org/DOI: 10.1017/CBO9780511816833.020
Kuhail, M. A., Alturki, N., Alramlawi, S., & Alhejori, K. (2022). Interacting with educational chatbots: A systematic review. Education and Information Technologies, 28, 1-46. https://doi.org/10.1007/s10639-022-11177-3
Kuhn, D. (2010). What is Scientific Thinking and How Does it Develop? In (pp. 497-523). https://doi.org/10.1002/9781444325485.ch19
Lederman, N. (2014). Lederman, N.G., & Lederman, J.S. (2014). Research on Teaching and Learning of Nature of Science. In N. G. Lederman & S. K. Abell (Eds.), Handbook of Research on Science Education, Volume II (pp. 600-620). New York, NY: Routledge. In.
Lee, J., Kim, M., Baek, S., Hwang, S. J., Sung, W., & Choi, J. (2023). Enhancing Computation Efficiency in Large Language Models through Weight and Activation Quantization. ArXiv, abs/2311.05161.
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Kuttler, H., Lewis, M., Yih, W.-t., Rocktäschel, T., Riedel, S., & Kiela, D. (2020). Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. ArXiv, abs/2005.11401.
Li, P. J., Hong, H. Y., Chai, C. S., Tsai, C. C., & Lin, P. Y. (2020). Fostering Students′ Scientific Inquiry through Computer-Supported Collaborative Knowledge Building. Research in Science Education, 50(5), 2035-2053. https://doi.org/10.1007/s11165-018-9762-3
Li, Y., Yu, Y., Liang, C., He, P., Karampatziakis, N., Chen, W., & Zhao, T. (2023). LoftQ: LoRA-Fine-Tuning-Aware Quantization for Large Language Models. ArXiv, abs/2310.08659.
Liang, X., Lihua, T., & Chen, L. (2021). TCTG:A Controllable Text Generation Method Using Text to Control Text Generation. 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP), 1118-1122.
Liao, C.-Y. (2023). Design a Writing Learning Companion Chatbot based on a Knowledge Graph to Help Primary School Students Practice Writing Skill. 2023 14th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), 691-692.
Lin, C.-Y. (2004). ROUGE: A Package for Automatic Evaluation of summaries.
Liu, Y., & Li, Z. (2016). Semantic Based Text Similarity Computation.
Manathunga, S. S., & Illangasekara, Y. A. (2023). Retrieval Augmented Generation and Representative Vector Summarization for large unstructured textual data in Medical Education. ArXiv, abs/2308.00479.
Manning, C., Utze, H., & Lee, L. (2000). Foundations of Statistical Natural Language Processing.
McKenney, S. (2006). Book review: Internet Environments for Science Education / by M. Linn, E. Davis & P. Bell (eds.), London, Lawrence Erlbaum Associates, ISBN 0-8058-4303-5. International Journal of Science Education - INT J SCI EDUC, 95-98.
Mendoza, S., Hernández-León, M., Sánchez-Adame, L. M., Rodríguez, J., Decouchant, D., & Meneses-Viveros, A. (2020). Supporting Student-Teacher Interaction Through a Chatbot. Interacción,
Minstrell, J. M., & Zee, E. H. v. (2000). Inquiring into Inquiry Learning and Teaching in Science.
Naveed, H., Khan, A. U., Qiu, S., Saqib, M., Anwar, S., Usman, M., Barnes, N., & Mian, A. S. (2023). A Comprehensive Overview of Large Language Models. ArXiv, abs/2307.06435.
Phuong, M., & Hutter, M. (2022). Formal Algorithms for Transformers. ArXiv, abs/2207.09238.
Platt, M., & Platt, D. (2023). Effectiveness of Generative Artificial Intelligence for Scientific Content Analysis. 2023 IEEE 17th International Conference on Application of Information and Communication Technologies (AICT), 1-4.
Ranzato, M. A., Chopra, S., Auli, M., & Zaremba, W. (2015). Sequence Level Training with Recurrent Neural Networks. CoRR, abs/1511.06732.
Resendes, M., Scardamalia, M., Bereiter, C., Chen, B., & Halewood, C. (2015). Group-level formative feedback and metadiscourse. International Journal of Computer-Supported Collaborative Learning, 10, 309-336. https://doi.org/10.1007/s11412-015-9219-x
Ruiz-Primo, M. A., Shavelson, R. J., Hamilton, L., & Klein, S. (2002). On the evaluation of systemic science education reform: Searching for instructional sensitivity. Journal of Research in Science Teaching, 39(5), 369-393. https://doi.org/https://doi.org/10.1002/tea.10027
Rygl, J., Pomikálek, J., Rehurek, R., Růžička, M., Novotný, V., & Sojka, P. (2017). Semantic Vector Encoding and Similarity Search Using Fulltext Search Engines. Rep4NLP@ACL,
Scardamalia, M., & Bereiter, C. (1991). Higher Levels of Agency for Children in Knowledge Building: A Challenge for the Design of New Knowledge Media. Journal of the Learning Sciences, 1(1), 37-68. https://doi.org/10.1207/s15327809jls0101_3
Scardamalia, M., & Bereiter, C. (2006). Knowledge building: Theory, pedagogy, and technology. In (pp. 97). https://doi.org/10.1017/CBO9781139519526.025
Seeber, I., Vreede, G.-J. d., Maier, R. K., & Weber, B. (2017). Beyond Brainstorming: Exploring Convergence in Teams. Journal of Management Information Systems, 34, 939 - 969.
Shahmirzadi, O., Lugowski, A., & Younge, K. (2018). Text Similarity in Vector Space Models: A Comparative Study. 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), 659-666.
Shahul, E., James, J., Anke, L. E., & Schockaert, S. (2023). RAGAs: Automated Evaluation of Retrieval Augmented Generation. Conference of the European Chapter of the Association for Computational Linguistics,
Steinberger, J., & Jezek, K. (2009). Evaluation Measures for Text Summarization. Computing and Informatics, 28, 251-275.
Stowe, K., Ghosh, D., & Zhao, M. (2022). Controlled Language Generation for Language Learning Items. Conference on Empirical Methods in Natural Language Processing,
Stupina, M., & Paniotova, V. (2023). An Educational Chatbot in a Blended Learning Environment. 2023 3rd International Conference on Technology Enhanced Learning in Higher Education (TELE), 276-279.
Sun, M., Wang, M., & Wegerif, R. (2020). Effects of divergent thinking training on students’ scientific creativity: The impact of individual creative potential and domain knowledge. Thinking Skills and Creativity, 37, 100682. https://doi.org/10.1016/j.tsc.2020.100682
Tan, B., Yang, Z., Al-Shedivat, M., Xing, E. P., & Hu, Z. (2021). Progressive Generation of Long Text with Pretrained Language Models. North American Chapter of the Association for Computational Linguistics,
Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., & J′egou, H. e. (2021). Going deeper with Image Transformers. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 32-42.
Vázquez-Cano, E., Mengual-Andres, S., & Meneses, E. (2021). Chatbot to improve learning punctuation in Spanish and to enhance open and flexible learning environments. International Journal of Educational Technology in Higher Education, 18. https://doi.org/10.1186/s41239-021-00269-8
Wang, J., & Dong, Y. (2020). Measurement of Text Similarity: A Survey. Inf., 11, 421.
Wang, T., Lund, B., Marengo, A., Pagano, A., Mannuru, N. R., Teel, Z. A., & Pange, J. (2023). Exploring the Potential Impact of Artificial Intelligence (AI) on International Students in Higher Education: Generative AI, Chatbots, Analytics, and International Student Success. Applied Sciences, 13, 6716. https://doi.org/10.3390/app13116716
Wu, E. H.-K., Lin, C.-H., Ou, Y.-Y., Liu, C.-Z., Wang, W.-K., & Chao, C.-Y. (2020). Advantages and Constraints of a Hybrid Model K-12 E-Learning Assistant Chatbot. IEEE Access, 8, 77788-77801.
Xu, J., Yu, J., Hu, S., Liu, X., & Meng, H. M. (2021). Mixed Precision Low-Bit Quantization of Neural Network Language Models for Speech Recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29, 3679-3693.
Yu, J., Cristea, A. I., Harit, A., Sun, Z., Aduragba, O. T., Shi, L., & Moubayed, N. A. (2022). INTERACTION: A Generative XAI Framework for Natural Language Inference Explanations. 2022 International Joint Conference on Neural Networks (IJCNN), 1-8.
Zhang, J., Hong, H.-Y., Scardamalia, M., Teo, C.-L., & Morley, E. (2011). Sustaining Knowledge Building as a Principle-Based Innovation at an Elementary School. The Journal of the Learning Sciences, 20, 262-307. https://doi.org/10.2307/41305913
Zhang, J., Scardamalia, M., Reeve, R., & Messina, R. (2009). Designs for Collective Cognitive Responsibility in Knowledge-Building Communities. Journal of the Learning Sciences, 18(1), 7-44. https://doi.org/10.1080/10508400802581676
Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong, Z., Du, Y., Yang, C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li, Y., Tang, X., Liu, Z., . . . Wen, J.-r. (2023). A Survey of Large Language Models. ArXiv, abs/2303.18223.
Zhao, Y., & Frank, K. (2003). Factors Affecting Technology Uses in Schools: An Ecological Perspective. American Educational Research Journal, 40, 807-840. https://doi.org/10.3102/00028312040004807
Zhu, Q., & Luo, J. (2022). Generative Design Ideation: A Natural Language Generation Approach. ArXiv, abs/2204.09658. |