博碩士論文 111423064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:18.219.206.102
姓名 莊以珺(Yi-Chun,Chuang)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 可客製化的探索性資料分析平台初探—以台股市場為例
(Exploring A Customizable Exploratory Data Analysis Platform - A Case Study in the Taiwan Stock Market)
相關論文
★ 針對提昇資料倉儲資料庫執行效能之知識管理與相關系統設計★ 以關聯規則探勘為基礎,探討詐騙車手提領型態互動之研究
★ 部落格之網路口碑評比機制平台管理與應用★ 虛擬貨幣交易平台之實現
★ 適用於多種設備的可否認鑑別協定之設計★ 交易程式最佳化的多維度分析平台之設計與建置
★ 多商品多策略程式交易績效曲線比較和分群機制之研究★ 整合分位數回歸分析與單因子選股的股票選股策略回測與績效評估之研究
★ 以工作流程與Portlet為基礎整合學習管理系統以支援課程編組★ 使用服務導向技術建構具支援二線廠客製化能力的電子中樞系統之研究
★ 以流程為中心的Portlet重用性分析★ 應用資料倉儲技術建構平衡計分卡資訊系統之研究-以某消費性電子製造公司人力資源計分卡為例
★ 自動化的產品平台管理與應用★ 以代理人為基礎的資訊系統協助新產品開發流程的自動化
★ 以整合式的教練引導開發以框架為基礎的專案★ 支援新產品研發的整合性知識管理系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-1以後開放)
摘要(中) 如何制定與驗證有效的投資策略一直是金融科技領域持續討論的焦點之一。在制定策略之前,從眾多因素中挑選出合適的因子是一項繁瑣的工程。若投資者能夠先對資料進行有系統的綜覽,了解資料的潛在趨勢,將能更有效率地制定投資策略。
為了達到這個目的,本研究提出了一套探索性資料分析(EDA)平台。透過濾網進行初步篩選,我們可以縮小股數及因子討論範圍。並利用熱力圖、散布回歸圖、盒鬚圖、Facegrid組圖等統計圖,將股價常見相關因子的趨勢以視覺化方式呈現。這將有助於經驗不足的投資者選擇因子的方向,也能協助經驗豐富的投資者優化策略。為了符合投資者的自身投資屬性,我們保留了客製化與系統化的空間,讓投資者可以透過XML進行自定義分析因子、設定參數分析圖表及其瀏覽流程,打造專屬的投資策略研究方法。
本研究透過三個實驗模擬在基本面、技術面、籌碼面的濾網下,展示了如何使用本系統獲得潛力因子的視覺化資訊。使用者可以將本工具與其他回測平台搭配使用,最終建立出最合適的投資策略。
摘要(英) How to formulate an effective investment strategy has always been a focal point in the financial technology field. Before devising a strategy, selecting suitable factors from numerous considerations is a meticulous task. If investors can systematically overview the data and understand its underlying trends, they can formulate investment strategies more efficiently.
To achieve this goal, this study proposes an Exploratory Data Analysis (EDA) platform. Through a filtering tool for preliminary screening, we can narrow down the scope of discussions. The trends of stock-related factors are presented visually by means of statistical charts, such as heatmaps, scatter plots, box plots, Facegrid composite plots, etc. This helps inexperienced investors in choosing the direction of factors and assists experienced investors in optimizing their strategies. To cater to investors′ personalized investment preferences, we provide customization options. Investors can customize analysis factors, set analysis parameters, analyze charts, and use XML to navigate the process, creating a personalized investment strategy research approach.
This study demonstrates how to obtain visual information on potential factors through the following three aspects: fundamental, technical, and chip. Users can integrate this tool with other backtesting platforms to ultimately establish the most suitable investment strategy.
關鍵字(中) ★ 探索性分析
★ 投資因子篩選
★ 交易策略擬定
關鍵字(英) ★ EDA
★ Exploratory Data Analysis
★ Investment Factor Screening
★ Trading Strategy Formulation
論文目次 目錄
摘要-i
Abstract-ii
致謝辭-iii
圖目錄-vii
表目錄-xi
一、 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 4
二、 文獻探討 5
2.1 量化交易 5
2.2 資料探勘跨領域標準流程(Cross-industry standard process for data mining, CRISP-DM) 5
2.2.1 時間序列資料(Time series data) 7
2.2.2 探索性分析(Exploratory Data Analysis, EDA) 7
2.2.3 特徵選擇器 8
2.3 統計圖表 8
2.3.1 熱力圖(Heatmap) 9
2.3.2 旭日圖(Sunburst Chart) 9
2.3.3 直方圖(Histogram) 10
2.3.4 直方+折線圖(displot) 11
2.3.5 箱形圖(box plot) 12
2.3.6 計數圖(countplot) 12
2.3.7 小提琴圖(Violin Plot) 13
2.3.8 散布圖(scatter plot) 14
2.3.9 線性回歸圖(regplot) 14
2.3.10 Pairplot 15
2.3.11 泡泡圖(Bubble Chart) 16
2.3.12 Facegrid圖表 16
2.4 平台操作介面與視覺化工具 17
三、 系統設計與實作 18
3.1 系統架構 18
3.2 資料庫設計 21
3.2.1 資料表設計 21
3.2.2 候選因子 28
3.3 系統流程 29
3.3.1 模組運作流程-資料分析及初覽 29
3.3.2 整合後的資料結構 32
3.3.3 模組運作流程-繪製視覺化圖表 33
3.4 客製化參數 35
3.4.1 XML參數化 36
3.4.2 濾網參數提供 36
3.4.3 客製化候選因子 37
3.4.4 客製化圖表參數 39
四、 系統驗證與分析 43
4.1 實驗變數 43
4.1.1 資料來源 43
4.1.2 目標變數說明 43
4.2 實驗設計 43
4.2.1 實驗流程 43
4.2.2 實驗環境 44
4.3 實驗結果 44
4.3.1 實驗一 雙率雙升濾網(基本面) 44
4.3.2 實驗二-籌碼面 55
4.3.3 實驗三-技術面 63
五、 結論 72
5.1 結論 72
5.2 研究限制 72
5.3 未來建議 73
參考文獻 74
附錄一、可分析候選因子清單 76
參考文獻 Atsalakis, G. S., & Valavanis, K. P. (2009). Forecasting stock market short-term trends using a neuro-fuzzy based methodology. Expert Systems with Applications, 36(7), 10696-10707.
Ball, R., & Brown, P. (1968). An Empirical Evaluation of Accounting Income Numbers. Journal of Accounting Research, 6(2), 159–178. https://doi.org/10.2307/2490232
Chatfield, C. (2013). The analysis of time series: theory and practice. Springer.
Data, M. C., Komorowski, M., Marshall, D. C., Salciccioli, J. D., & Crutain, Y. (2016). Exploratory data analysis. Secondary analysis of electronic health records, 185-203.
Fu, T.-c. (2011). A review on time series data mining. Engineering Applications of Artificial Intelligence, 24(1), 164-181.
Harold, E. R., & Means, W. S. (2004). XML in a nutshell: a desktop quick reference. " O′Reilly Media, Inc.".
Hintze, J. L., & Nelson, R. D. (1998). Violin plots: a box plot-density trace synergism. The American Statistician, 52(2), 181-184.
Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in science & engineering, 9(03), 90-95.
KDnuggets. (2002). What main methodology are you using for data mining?(2002). https://www.kdnuggets.com/polls/2002/methodology.htm
KDnuggets. (2004). What main methodology are you using for data mining?(2004). https://www.kdnuggets.com/polls/2004/data_mining_methodology.htm
KDnuggets. (2007). What main methodology are you using for data mining?(2007). https://www.kdnuggets.com/polls/2007/data_mining_methodology.htm
KDnuggets. (2014). What main methodology are you using for your analytics, data mining, or data science projects?(2014). Retrieved 2014 from https://www.kdnuggets.com/polls/2014/analytics-data-mining-data-science-methodology.html
Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B. E., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J. B., Grout, J., & Corlay, S. (2016). Jupyter Notebooks-a publishing format for reproducible computational workflows. Elpub, 2016, 87-90.
Larose, D. T., & Larose, C. D. (2014). Discovering knowledge in data: an introduction to data mining (Vol. 4). John Wiley & Sons.
Martinez, W. L., Martinez, A. R., & Solka, J. (2017). Exploratory data analysis with MATLAB. Crc Press.
Pandey, A. V., Manivannan, A., Nov, O., Satterthwaite, M., & Bertini, E. (2014). The persuasive power of data visualization. IEEE transactions on visualization and computer graphics, 20(12), 2211-2220.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., & Dubourg, V. (2011). Scikit-learn: Machine learning in Python. The Journal of Machine Learning Research, 12, 2825-2830.
Playfair, W. (1786). The Commercial and Political Atlas: Representing, by Means of Stained Copper-Plate Charts, the Progress of the Commerce, Revenues, Expenditure and Debts of England During the Whole of the Eighteenth Century.
Playfair, W. (1801). The statistical breviary. Wallis.
Seltman, H. J. (2012). Experimental design and analysis. In: Carnegie Mellon University Pittsburgh.
Ta, V.-D., Liu, C.-M., & Addis, D. (2018). Prediction and portfolio optimization in quantitative trading using machine learning techniques. Proceedings of the 9th International Symposium on Information and Communication Technology,
Ta, V.-D., Liu, C.-M., & Tadesse, D. A. (2020). Portfolio optimization-based stock prediction using long-short term memory network in quantitative trading. Applied Sciences, 10(2), 437.
Tukey, J. W. (1977). Exploratory data analysis (Vol. 2). Reading, MA.
Waskom, M. L. (2021). Seaborn: statistical data visualization. Journal of Open Source Software, 6(60), 3021.
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining,
Kinney C. 美國專利商標局,註冊號#75263259」。1993 年。
TEJ. (2022).台灣經濟新報資料庫https://www.tejwin.com/
Tableau https://www.tableau.com/
Plotly https://plotly.com/
Power BI https://www.microsoft.com/en-us/power-platform/products/power-bi
指導教授 許智誠(Jyh-Cheng Hsu) 審核日期 2024-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明