參考文獻 |
洪菁穗, & 吳心楷. (2022). 高中科學教師對「探究與實作」課程的概念:課程特徵、挑戰、教學目標與教學活動 [High School Science Teachers′ Conceptions About the Curriculum of "Inquiry and Practice": Course Characteristics, Challenges, Teaching Goals and Activities]. 科學教育學刊, 30(1), 1-26. https://doi.org/10.6173/CJSE.202203_30(1).0001
教育部. (2014). 十二年國民基本教育課程綱要總綱. 臺北: 教育部
蔡宛庭. (2016). 支援科學專題學習之線上學習平台開發與評估 桃園市中壢區.
Almeida, F. L., & Simões, J. (2019). The Role of Serious Games, Gamification and Industry 4.0 Tools in the Education 4.0 Paradigm. Contemporary Educational Technology. https://doi.org/10.30935/cet.554469
Banchi, H., & Bell, R. (2008). THE MANY LEVELS OF Inquiry. Science and children, 46(2), 26-29. https://doi.org/10.2505/3/sc08_046_02
Cai, J., Morris, A. K., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., Kramer, S., & Hiebert, J. (2019). Posing Significant Research Questions. Journal for Research in Mathematics Education. https://doi.org/10.5951/JRESEMATHEDUC.50.2.0114
Cevallos, A., Latorre, L., Alicandro, G., Wanner, Z. l., Cerrato, I., Zarate, J. D., Alvarez, J., Villacreses, K., Pfeifer, M., Gutierrez, M., Villanueva, V., Rivera-Fournier, A., Riobó, A., Pombo, C., Puerto, F., & Rodriguez Breuning, J. (2023). Tech Report Generative AI.
Chen, C.-H., Chen, K.-Z., & Tsai, H.-F. (2022). Did Self-Directed Learning Curriculum Guidelines Change Taiwanese High-School Students’ Self-Directed Learning Readiness? The Asia-Pacific education researcher, 31(4), 409-426. https://doi.org/10.1007/s40299-021-00582-w
Chen, J., Lin, H., Han, X., & Sun, L. (2023). Benchmarking Large Language Models in Retrieval-Augmented Generation. AAAI Conference on Artificial Intelligence,
Chin, C., & Osborne, J. F. (2008). Students′ questions: a potential resource for teaching and learning science. Studies in Science Education, 44, 1 - 39. https://doi.org/10.1080/03057260701828101
Crawford, B. A. (2012). Moving the Essence of Inquiry into the Classroom: Engaging Teachers and Students in Authentic Science. In (pp. 25-42). Springer Netherlands. https://doi.org/10.1007/978-94-007-3980-2_3
Debbah, M. (2023). Large Language Models for Telecom. 2023 Eighth International Conference on Fog and Mobile Edge Computing (FMEC), 3-4. https://doi.org/10.1109/FMEC59375.2023.10305960
Douglas, M. R. (2023). Large Language Models. Communications of the ACM, 66, 7 - 7. https://doi.org/10.48550/arXiv.2307.05782
Edelson, D. C. (2001). Learning-for-use : A framework for the design of technology-supported inquiry activities. Journal of Research in Science Teaching, 38, 355-385. https://doi.org/10.1002/1098-2736(200103)38:3<355::AID-TEA1010>3.0.CO;2-M
Epstein, Z., Hertzmann, A., Herman, L. M., Mahari, R., Frank, M. R., Groh, M., Schroeder, H., Smith, A., Akten, M., Fjeld, J., Farid, H., Leach, N., Pentland, A., & Russakovsky, O. (2023). Art and the science of generative AI. Science, 380, 1110 - 1111. https://doi.org/10.1126/science.adh4451
Gozalo-Brizuela, R., & Garrido-Merch′an, E. C. (2023). A survey of Generative AI Applications. ArXiv, abs/2306.02781. https://doi.org/10.48550/arxiv.2306.02781
Grow, G. O. (1991). Teaching Learners To Be Self-Directed. Adult Education Quarterly, 41(3), 125-149. https://doi.org/10.1177/0001848191041003001
Hartley, K., & Bendixen, L. D. (2001). Educational Research in the Internet Age: Examining the Role of Individual Characteristics [Article]. Educational Researcher, 30(9), 22-26. https://doi.org/10.3102/0013189X030009022
Herranen, J., & Aksela, M. K. (2019). Student-question-based inquiry in science education. Studies in Science Education, 55, 1 - 36. https://doi.org/10.1080/03057267.2019.1658059
Hmelo‐Silver, C. E. (2004). Problem-Based Learning: What and How Do Students Learn? Educational Psychology Review, 16, 235-266. https://doi.org/10.1023/B:EDPR.0000034022.16470.f3
Hsu, C.-C., Chiu, C.-H., Lin, C.-H., & Wang, T.-I. (2015). Enhancing skill in constructing scientific explanations using a structured argumentation scaffold in scientific inquiry. Computers & Education, 91, 46-59. https://doi.org/https://doi.org/10.1016/j.compedu.2015.09.009
Hu, J. E., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., & Chen, W. (2021). LoRA: Low-Rank Adaptation of Large Language Models. ArXiv, abs/2106.09685. https://doi.org/10.48550/arxiv.2106.09685
Jégou, H., Douze, M., & Schmid, C. (2011). Product Quantization for Nearest Neighbor Search. IEEE transactions on pattern analysis and machine intelligence, 33, 117-128. https://doi.org/10.1109/TPAMI.2010.57
Jiang, Z., Xu, F. F., Gao, L., Sun, Z., Liu, Q., Dwivedi-Yu, J., Yang, Y., Callan, J., & Neubig, G. (2023). Active Retrieval Augmented Generation. ArXiv, abs/2305.06983. https://doi.org/10.48550/arxiv.2305.06983
Kaddour, J., Harris, J., Mozes, M., Bradley, H., Raileanu, R., & McHardy, R. (2023). Challenges and Applications of Large Language Models. ArXiv, abs/2307.10169. https://doi.org/10.48550/arxiv.2307.10169
Keselman, A. (2003). Supporting inquiry learning by promoting normative understanding of multivariable causality. Journal of Research in Science Teaching, 40(9), 898-921. https://doi.org/10.1002/tea.10115
Khan, L., McLeod, D., & Hovy, E. H. (2004). Retrieval effectiveness of an ontology-based model for information selection. The VLDB Journal, 13, 71-85. https://doi.org/10.1007/s00778-003-0105-1
Kim, M. C., Hannafin, M. J., & Bryan, L. A. (2007). Technology-Enhanced Inquiry Tools in Science Education: An Emerging Pedagogical Framework for Classroom Practice. Science Education, 91, 1010-1030. https://doi.org/10.1002/sce.20219
Kross, J., & Giust, A. M. (2019). Elements of Research Questions in Relation to Qualitative Inquiry. The Qualitative Report. https://doi.org/10.46743/2160-3715/2019.3426
Lai, C.-L., Hwang, G.-j., & Tu, Y.-H. (2018). The effects of computer-supported self-regulation in science inquiry on learning outcomes, learning processes, and self-efficacy. Educational Technology Research and Development, 66, 863 - 892. https://doi.org/10.1007/s11423-018-9585-y
Lee, O., Buxton, C., Lewis, S., & Leroy, K. (2006). Science inquiry and student diversity: Enhanced abilities and continuing difficulties after an instructional intervention. Journal of Research in Science Teaching, 43(7), 607-636. https://doi.org/10.1002/tea.20141
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Kuttler, H., Lewis, M., Yih, W.-t., Rocktäschel, T., Riedel, S., & Kiela, D. (2020). Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. ArXiv, abs/2005.11401. https://doi.org/10.48550/arxiv.2005.11401
Mamun, M. A. A., Lawrie, G., & Wright, T. (2020). Instructional design of scaffolded online learning modules for self-directed and inquiry-based learning environments. Computers & Education, 144, 103695. https://doi.org/https://doi.org/10.1016/j.compedu.2019.103695
Manlove, S., Lazonder, A. W., & de Jong, T. (2009). Collaborative versus individual use of regulative software scaffolds during scientific inquiry learning. Interactive Learning Environments, 17(2), 105-117. https://doi.org/10.1080/10494820701706437
Micikevicius, P., Stosic, D., Burgess, N., Cornea, M., Dubey, P. K., Grisenthwaite, R., Ha, S., Heinecke, A., Judd, P., Kamalu, J., Mellempudi, N., Oberman, S. F., Shoeybi, M., Siu, M., & Wu, H. (2022). FP8 Formats for Deep Learning. ArXiv, abs/2209.05433. https://doi.org/10.48550/arxiv.2209.05433
Mu, C., Zhao, J., Yang, G., Zhang, J., & Yan, Z. (2018). Towards Practical Visual Search Engine within Elasticsearch. ArXiv, abs/1806.08896. https://doi.org/10.48550/arxiv.1806.08896
Muller, M. J., Chilton, L. B., Kantosalo, A., Martin, C. P., & Walsh, G. (2022). GenAICHI: Generative AI and HCI. CHI Conference on Human Factors in Computing Systems Extended Abstracts. https://doi.org/10.1145/3544549.3573794
Ojo, J., Ogueji, K., Stenetorp, P., & Adelani, D. I. (2023). How good are Large Language Models on African Languages? ArXiv, abs/2311.07978. https://doi.org/10.48550/arxiv.2311.07978
Pedaste, M., Mäeots, M., Siiman, L. A., de Jong, T., van Riesen, S. A. N., Kamp, E. T., Manoli, C. C., Zacharia, Z. C., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, 47-61. https://doi.org/10.1016/j.edurev.2015.02.003
Pérez, J. Q., Daradoumis, T., & Puig, J. M. M. (2020). Rediscovering the use of chatbots in education: A systematic literature review. Computer Applications in Engineering Education, 28, 1549 - 1565. https://doi.org/10.1002/cae.22326
Ram, O., Levine, Y., Dalmedigos, I., Muhlgay, D., Shashua, A., Leyton-Brown, K., & Shoham, Y. (2023). In-Context Retrieval-Augmented Language Models. Transactions of the Association for Computational Linguistics, 11, 1316-1331. https://doi.org/10.1162/tacl_a_00605
Rygl, J., Pomikálek, J., Rehurek, R., Růžička, M., Novotný, V., & Sojka, P. (2017). Semantic Vector Encoding and Similarity Search Using Fulltext Search Engines. Rep4NLP@ACL,
Samuelson, P. (2023). Generative AI meets copyright. Science, 381, 158 - 161. https://doi.org/10.1126/science.adi0656
Sandoval, W. A., & Reiser, B. J. (2004). Explanation-Driven Inquiry: Integrating Conceptual and Epistemic Scaffolds for Scientific Inquiry. Science Education, 88, 345-372. https://doi.org/10.1002/SCE.10130
Shahul, E., James, J., Anke, L. E., & Schockaert, S. (2023). RAGAs: Automated Evaluation of Retrieval Augmented Generation. Conference of the European Chapter of the Association for Computational Linguistics,
Sharples, M., Taylor, J., & Vavoula, G. (2005). Towards a theory of mobile learning. Proceedings of mLearn,
Shi, R., Zhang, J., Chu, W., Bao, Q., Jin, X., Gong, C., Zhu, Q., Yu, C., & Rosenberg, S. (2015). MDP and Machine Learning-Based Cost-Optimization of Dynamic Resource Allocation for Network Function Virtualization. 2015 IEEE International Conference on Services Computing, 65-73. https://doi.org/10.1109/SCC.2015.19
Song, L., & Hill, J. R. (2007). A conceptual model for understanding self-directed learning in online environments [Article]. Journal of Interactive Online Learning, 6(1), 27-42. https://www.scopus.com/inward/record.uri?eid=2-s2.0-33947609385&partnerID=40&md5=c98954a323fd401eff1c7476125e833e
Wagle, S. N., Munikoti, S., Acharya, A., Smith, S., & Horawalavithana, S. (2023). Empirical evaluation of Uncertainty Quantification in Retrieval-Augmented Language Models for Science. ArXiv, abs/2311.09358. https://doi.org/10.48550/arxiv.2311.09358
Wang, Z., Wohlwend, J., & Lei, T. (2019). Structured Pruning of Large Language Models. ArXiv, abs/1910.04732. https://doi.org/10.48550/arXiv.1910.04732
Weisz, J. D., Muller, M. J., He, J., & Houde, S. (2023). Toward General Design Principles for Generative AI Applications 130-144. IUI Workshops,
Wong, L.-H., & Looi, C.-K. (2012). Swarm intelligence: new techniques for adaptive systems to provide learning support. Interactive Learning Environments, 20(1), 19-40. https://doi.org/10.1080/10494821003714681
Yu, W. (2022). Retrieval-augmented Generation across Heterogeneous Knowledge. North American Chapter of the Association for Computational Linguistics,
Yuen, A. H. K., & Ma, W. W. K. (2008). Exploring teacher acceptance of e‐learning technology. Asia-Pacific journal of teacher education, 36(3), 229-243. https://doi.org/10.1080/13598660802232779
Zeng, Y., & Lee, K. (2024). The Expressive Power of Low-Rank Adaptation. arXiv.org. https://doi.org/10.48550/arxiv.2310.17513
Zhang, P., & Boulos, M. N. K. (2023). Generative AI in Medicine and Healthcare: Promises, Opportunities and Challenges. Future Internet, 15, 286. https://doi.org/10.3390/fi15090286
Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong, Z., Du, Y., Yang, C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li, Y., Tang, X., Liu, Z., . . . Wen, J.-r. (2023). A Survey of Large Language Models. ArXiv, abs/2303.18223. https://doi.org/10.48550/arxiv.2303.18223
Zoupanos, S., Kolovos, S., Kanavos, A., Papadimitriou, O., & Maragoudakis, M. (2022). Efficient comparison of sentence embeddings. Proceedings of the 12th Hellenic Conference on Artificial Intelligence. https://doi.org/10.48550/arXiv.2204.00820 |