參考文獻 |
[1] Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., ... & Yoon, D. H. (2017, June). In-datacenter performance analysis of a tensor processing unit. In Proceedings of the 44th annual international symposium on computer architecture (pp. 1-12).
[2] Kung, H. T., & Leiserson, C. E. (1979, January). Systolic arrays (for VLSI). In Sparse Matrix Proceedings 1978 (Vol. 1, pp. 256-282). Philadelphia, PA, USA: Society for industrial and applied mathematics.
[3] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
[4] Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2017, February). Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the AAAI conference on artificial intelligence (Vol. 31, No. 1).
[5] Liu, W., & Chang, C. H. (2019, May). Analysis of circuit aging on accuracy degradation of deep neural network accelerator. In 2019 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1-5). IEEE.
[6] Moghaddasi, I., Gorgin, S., & Lee, J. A. (2023). Dependable dnn accelerator for safety-critical systems: A review on the aging perspective. IEEE Access.
[7] Abdullah Hanif, M., & Shafique, M. (2020). Salvagednn: salvaging deep neural network accelerators with permanent faults through saliency-driven fault-aware mapping. Philosophical Transactions of the Royal Society A, 378(2164), 20190164.
[8] Salamin, S., Zervakis, G., Spantidi, O., Anagnostopoulos, I., Henkel, J., & Amrouch, H. (2021, February). Reliability-aware quantization for anti-aging NPUs. In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE) (pp. 1460-1465). IEEE.
[9] Zhang, J., Rangineni, K., Ghodsi, Z., & Garg, S. (2018, June). Thundervolt: enabling aggressive voltage underscaling and timing error resilience for energy efficient deep learning accelerators. In Proceedings of the 55th Annual Design Automation Conference (pp. 1-6).
[10] Zhang, J. J., Gu, T., Basu, K., & Garg, S. (2018, April). Analyzing and mitigating the impact of permanent faults on a systolic array based neural network accelerator. In 2018 IEEE 36th VLSI Test Symposium (VTS) (pp. 1-6). IEEE.
[11] Ghodrati, S., Ahn, B. H., Kim, J. K., Kinzer, S., Yatham, B. R., Alla, N., ... & Esmaeilzadeh, H. (2020, October). Planaria: Dynamic architecture fission for spatial multi-tenant acceleration of deep neural networks. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) (pp. 681-697). IEEE.
[12] Samajdar, A., Zhu, Y., Whatmough, P., Mattina, M., & Krishna, T. (2018). Scale-sim: Systolic cnn accelerator simulator. arXiv preprint arXiv:1811.02883.
[13] Oboril, F., & Tahoori, M. B. (2012, June). Extratime: Modeling and analysis of wearout due to transistor aging at microarchitecture-level. In IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2012) (pp. 1-12). IEEE.
[14] Tiwari, A., & Torrellas, J. (2008, November). Facelift: Hiding and slowing down aging in multicores. In 2008 41st IEEE/ACM International Symposium on Microarchitecture (pp. 129-140). IEEE.
[15] Henkel, J., Ebi, T., Amrouch, H., & Khdr, H. (2013, January). Thermal management for dependable on-chip systems. In 2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC) (pp. 113-118). IEEE.
[16] Chen, Y. H., Krishna, T., Emer, J. S., & Sze, V. (2016). Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks. IEEE journal of solid-state circuits, 52(1), 127-138.
[17] Xu, R., Ma, S., Wang, Y., Chen, X., & Guo, Y. (2021). Configurable multi-directional systolic array architecture for convolutional neural networks. ACM Transactions on Architecture and Code Optimization (TACO), 18(4), 1-24. |