以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:99 、訪客IP:3.141.31.108
姓名 胡祐豪(You-Hao Hu) 查詢紙本館藏 畢業系所 資訊工程學系 論文名稱 非地面網路中基於全球衛星導航系統與軌道預測誤差之隨機接入前導碼設計
(Random Access Preamble Design in Non-Terrestrial Networks with Imperfect GNSS and Orbit Prediction Positioning)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 在 5G 非地面網路 (NTN) 中,隨機接入使用的前導碼在低地球軌道(LEO) 衛星環境中會受到長時間延遲和高都卜勒頻移的影響。3GPP 提出在用戶設備 (UE) 端進行時間和頻率的預補償。衛星將其位置和速度以星曆格式廣播給用戶設備 (UE),用戶設備使用全球導航衛星系統(GNSS) 接收器來確定其位置。因此,UE 可以在接入衛星網路之前進行時間延遲和頻率偏移的預補償。儘管有預補償的幫助,前導碼設計仍然會遭受時序提前 (TA) 估計錯誤。在本論文中,我們提出了一種非等差循環移位前導碼設計來減少這些錯誤。數值評估表明,與等差循環移位設計相比,我們提出的方案在首次接入成功率和 TA 估計錯誤率方面具有更高的性能。 摘要(英) In 5G Non-terrestrial networks (NTN), preamble adopted in random access suffers from the long delays and high Doppler shifts in Low Earth Orbit (LEO) satellite environments. 3GPP proposes time and frequency pre-compensation at user equipment (UE) side. Satellites broadcast their position and velocity in ephemeris format to the UE, which uses Global Navigation Satellite System (GNSS) receiver to determine its position. Hence, UEs can pre-compensate time delays and frequency shifts before accessing the satellite network. By the aid of pre-compensation, preamble design still suffers
from timing advance (TA) estimation errors. In this thesis, we propose a non-common-difference cyclic shift preamble design to reduce these errors. Numerical evaluations demonstrate that our proposed scheme preforms a higher first access success rate and lower TA estimation errors compared to non-common-difference cyclic shift designs.關鍵字(中) ★ 衛星通訊
★ 隨機接入
★ 前導訊號設計
★ 都卜勒偏移
★ 上行鏈路
★ 全球導航系統 (GNSS)
★ 兩行軌道要素形式 (TLE)
★ 簡化常規攝動模型 (SGP4)
★ 軌道預測
★ 預補償關鍵字(英) ★ Satellite Communication
★ Random access
★ Preamble Design
★ Doppler shift
★ Uplink
★ GNSS
★ TLE
★ SGP4
★ Orbit Prediction
★ Pre-compensation論文目次 中文摘要 i
Abstract ii
致謝 iii
Contents iv
List of Figures vi
List of Tables viii
1 Introduction 1
2 Related Work 4
2.1 Preamble design with multiple root . . . . . . . . . . . . . . . . . . . . . 4
2.2 Preamble design with single root . . . . . . . . . . . . . . . . . . . . . . 5
3 Preliminary 7
3.1 Zadoff-Chu sequences as RA preamble for NTN . . . . . . . . . . . . . . 7
3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 Received Signal . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Preamble Length 10
4.1 Orbit Prediction Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Carrier Frequency Offset After Pre-compensation . . . . . . . . . . . . . 13
4.3 Time Offset After Pre-compensation . . . . . . . . . . . . . . . . . . . . 13
4.4 Required Preamble Length . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5 Preamble Design 19
5.1 Preamble Detection Mechanism . . . . . . . . . . . . . . . . . . . . . . 20
5.1.1 TA Estimation Error . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Proposed Non-common-difference Cyclic Shift Preamble Design . . . . . 23
5.2.1 Proposed Preamble Pattern . . . . . . . . . . . . . . . . . . . . . 23
5.2.2 Proposed Preamble Detection Mechanism . . . . . . . . . . . . . 27
6 Simulation 32
6.1 Impact of Multi-user . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Impact of δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7 Conclusion 41
Bibliography 42參考文獻 [1] Solutions for NR to support non-terrestrial networks (NTN), 3GPP TR 38.821 V16.2.0, March. 2023.
[2] W. Liu, X. Hou, J. Wang, L. Chen, and S. Yoshioka, “Uplink time synchronization method and procedure in release-17 nr ntn,” 2022 IEEE 95rd Vehicular Technology Conference (VTC2022-Spring), pp. 1–5, Jun. 2022.
[3] NR; NR and NG-RAN Overall Description; Stage 2, 3GPP TS 38.300 V18.1.0, March. 2024.
[4] NR; Physical layer procedure for control, 3GPP TS 38.213 V18.2.0, Mar. 2024.
[5] NR; Physical channels and modulation, 3GPP TS 38.211 V18.2.0, Mar. 2024.
[6] NR; Radio Resource Control (RRC) protocol specification, 3GPP TS 38.331 V18.1.0, Mar. 2024.
[7] S. Aida and M. Kirschner, “Accuracy assessment of sgp4 orbit information conversion into osculating elements,” 2013 6th European Conference on Space Debris, April. 2013.
[8] K. Riesing and K. Cahoy, “Propagation of cubesats in leo using norad two line element sets: Accuracy and update frequency,” 2013 AIAA Guidance, Navigation, and Control (GNC) Conference, August. 2013.
[9] C. Foster, H. Hallam, and J. Mason, “Orbit determination and differential-drag control of planet labs cubesat constellations,” 2015 AIAA Astrodynamics Specialist Conference, August. 2015.
[10] X. L. Xu and Y. Q. Xiong, “Study on orbit error of tle catalogue system,” 2018 Acta Astronomica Sinica, vol. 59, May. 2018.
[11] D. Racelis and M. Joerger, “High-integrity tle error models for meo and geo satellites,” 2018 AIAA SPACE and Astronautics Forum and Exposition, September. 2018.
[12] A. Mohanty and G. Gao, “Learning gnss positioning corrections for smartphones using graph convolution neural networks,” Journal of the Institute of Navigation
December 2023, December. 2023.
[13] Evaluations of 2-Rooted PRACH Preamble, Qualcomm, document R1-1911113, TS-GRAN WG1 #98bis, Oct. 2019.
[14] L. Zhen, H. Qin, B. Song, R. Ding, X. Du, and M. Guizani, “Random access preamble design and detection for mobile satellite communication systems,” IEEE Journal
on Selected Areas in Communications, vol. 36, no. 2, pp. 280–291, Feb. 2018.
[15] S. Riolo, D. Panno, and L. Miuccio, “Modeling and analysis of tagged preamble transmissions in random access procedure for mmtc scenarios,” IEEE Transactions on Wireless Communications, vol. 20, no. 7, July. 2021.
[16] L. Zhen, A. K. Bashir, K. Yu, Y. D. Al-Otaibi, C. H. Foh, and P. Xiao, “Energy-efficient random access for leo satellite-assisted 6g internet of remote things,” IEEE Internet of Things Journal, vol. 8, no. 7, pp. 5114–5128, April. 2021.
[17] T. Sun, L. Zhen, G. Lu, and K. Yu, “Random access preamble design and detection for 5g remote health via satellite communications,” in 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW). IEEE, 2020, pp. 1–6.
[18] X. Lin, J. Li, R. Baldemair, T. Cheng, S. Parkvall, D. Larsson, H. Koorapaty, M. Frenne, S. Falahati, A. Grövlen, and K. Werner, “5g new radio: Unveiling the essentials of the next generation wireless access technology,” IEEE Communications Standards Magazine, vol. 3, no. 3, pp. 30–37, September. 2019. 43
[19] M. Caus and M. Shaat, “Prach signal design and detection for leo satellite systems with imperfect ue positioning,” 2024 27th International Workshop on Smart Antennas (WSA), March. 2024.
[20] NR; Study on New Radio (NR) to support non-terrestrial networks, 3GPP TS 38.811 V15.4.0, Sep. 2020.
[21] D. Vallado and P. Crawford, “Sgp4 orbit determination,” 2008 AIAA/AAS Astrodynamics Specialist Conference and Exhibit, August. 2008.指導教授 張貴雲(Guey-Yun Chang) 審核日期 2024-7-26 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare