參考文獻 |
[1] Hua Yu Gou, Yu Chen, Mian Gang Tang, Rui Bin Zhao, Xin Shuai Tan, and Li Yan,
"Dynamic-Switching Energy Dissipation Behaviorsof Cryogenic Power MOSFET at
77 K," IEEE Transactions on Applied Superconductivity, vol. 31, no. 8, pp. 1-2, Nov.
2021, Art no. 0603402, doi: 10.1109/TASC.2021.3108731.
[2] Arnout Beckers, Farzan Jazaeri, Andrea Ruffino, Claudio Bruschini, Andrea
Baschirotto, and Christian Enz, "Cryogenic Characterization of 28 nm Bulk CMOS
Technology for Quantum Computing, " European Solid-State Device Research
Conference, pp. 62-65, doi: 10.1109/ESSDERC.2017.8066592.
[3] Davide Braga, Shaorui Li, and Farah Fahim, "Cryogenic Electronics Development for
High-Energy Physics: An Overview of Design Considerations, Benefits, and Unique
Challenges," IEEE Solid-State Circuits Magazine, vol. 13, no. 2, pp. 36-45, Spring
2021, doi: 10.1109/MSSC.2021.3072804.
[4] Arnout Beckers, Farzan Jazaeri, and Christian Enz, "Inflection Phenomenon in
Cryogenic MOSFET Behavior," IEEE Transactions on Electron Devices, vol. 67, no.
3, pp. 1357-1360, March 2020 , doi: 10.1109/TED.2020.2965475.
[5] W. Feng, K. Yamada and K. Ohmori, "Random telegraph noise induced drain-current
fluctuation during dynamic gate bias in Si MOSFETs," 2013 22nd International
Conference on Noise and Fluctuations (ICNF), Montpellier, France, 2013, pp. 1-4,
doi: 10.1109/ICNF.2013.6578880.
[6] E. R. Hsieh, P. Y. Lu, Steve S. Chung, J. C. Ke, C. W. Yang, C. T. Tsai, T. R. Yew.,
"The RTN measurement technique on leakage path finding in advanced high-k metal
gate CMOS devices," 2015 IEEE 22nd International Symposium on the Physical and
Failure Analysis of Integrated Circuits, Hsinchu, Taiwan, 2015, pp. 154-457, doi:10.1109/IPFA.2015.7224355.
[7] C. M. Chang , Steve S. Chung, Y. S. Hsieh, L. W. Cheng, C. T. Tsai, G. H. Ma, S. C.
Chien, S. W. Sun., "The observation of trapping and detrapping effects in high-k gate
dielectric MOSFETs by a new gate current Random Telegraph Noise (IG-RTN)
approach," 2008 IEEE International Electron Devices Meeting, San Francisco, CA,
USA, 2008, pp. 1-4, doi: 10.1109/IEDM.2008.4796815.
[8] L. C. Lin, Z. Y. Wang, M. Y. Lee, J. K. Chang, E. R. Hsieh, J. C. Guo, and Steve S.
Chung., "A Built-in Spice Time-domain Variation Model of the BTI-induced Random
Trap Fluctuation (RTF) in 14 nm FinFETs," 2022 IEEE Silicon Nanoelectronics
Workshop (SNW), Honolulu, HI, USA, 2022, pp. 1-2, doi:
10.1109/SNW56633.2022.9889071.
[9] E. R. Hsieh, Y. H. Ye, Y. S. Wu, C. F. Huang,P. S. Huang, Y. S. Huang, M. L. Miu,
H. S. Su, S. Y. Huang, and S. M. Lu, "Positive-Bias-Temperature-Instability Induced
Random-Trap-Fluctuation Enhanced Physical Unclonable Functions on 14-nm
nFinFETs," in IEEE Electron Device Letters, vol. 43, no. 9, pp. 1396-1399, Sept. 2022,
doi: 10.1109/LED.2022.3188492.
[10] Y. Li and H. -W. Cheng, "Random Work-Function-Induced Threshold Voltage
Fluctuation in Metal-Gate MOS Devices by Monte Carlo Simulation," in IEEE
Transactions on Semiconductor Manufacturing, vol. 25, no. 2, pp. 266-271, May 2012,
doi: 10.1109/TSM.2011.2181964.
[11] Y. Q. Aguiar, F. L. Kastensmidt, C. Meinhardt and R. A. L. Reis, "SET response of
FinFET-based majority voter circuits under work-function fluctuation," 2017 24th
IEEE International Conference on Electronics, Circuits and Systems (ICECS), Batumi,
Georgia, 2017, pp. 282-285, doi: 10.1109/ICECS.2017.8292064.
[12] A. K. Dubey, P. K. Pal, V. Varshney, A. Kumar and R. K. Nagaria, "Impact of
Channel Doping Fluctuation and Metal Gate Work Function Variation in FD-SOIMOSFET for 5nm BOX Thickness," 2019 IEEE Conference on Information and
Communication Technology, Allahabad, India, 2019, pp. 1-4, doi:
10.1109/CICT48419.2019.9066255.
[13] X. Jiang, M. Li, R. Wang, J. Chen and R. Huang, "Investigations on the correlation
between line-edge-roughness (LER) and line-width-roughness (LWR) in nanoscale
CMOS technology," 2012 IEEE 11th International Conference on Solid-State and
Integrated Circuit Technology, Xi′an, China, 2012, pp. 1-3, doi:
10.1109/ICSICT.2012.6466733.
[14] X. Jiang, R. Wang, T. Yu, J. Chen and R. Huang, "Investigations on Line-Edge
Roughness (LER) and Line-Width Roughness (LWR) in Nanoscale CMOS
Technology: Part I–Modeling and Simulation Method," in IEEE Transactions on
Electron Devices, vol. 60, no. 11, pp. 3669-3675, Nov. 2013, doi:
10.1109/TED.2013.2283518
[15] R. Wang, Xiaobo Jiang , Tao Yu, Jiewen Fan, Jiang Chen, David Z. Pan, Ru Huang .,
"Investigations on Line-Edge Roughness (LER) and Line-Width Roughness (LWR)
in Nanoscale CMOS Technology: Part II–Experimental Results and Impacts on
Device Variability," in IEEE Transactions on Electron Devices, vol. 60, no. 11, pp.
3676-3682, Nov. 2013, doi: 10.1109/TED.2013.2283517.
[16] N. Damrongplasit, S. H. Kim, C. Shin and T. -J. K. Liu, "Impact of Gate Line-Edge
Roughness (LER) Versus Random Dopant Fluctuations (RDF) on Germanium-Source
Tunnel FET Performance," in IEEE Transactions on Nanotechnology, vol. 12, no. 6,
pp. 1061-1067, Nov. 2013, doi: 10.1109/TNANO.2013.2278153.
[17] C. -Y. Chen, W. -T. Huang and Y. Li, "Electrical characteristic and power
consumption fluctuations of trapezoidal bulk FinFET devices and circuits induced by
random line edge roughness," Sixteenth International Symposium on Quality
Electronic Design, Santa Clara, CA, USA, 2015, pp. 61-64, doi:10.1109/ISQED.2015.7085399.
[18] C. L. Alexander and A. Asenov, "Statistical MOSFET current variation due to
variation in surface roughness scattering," 2011 International Conference on
Simulation of Semiconductor Processes and Devices, Osaka, Japan, 2011, pp. 275-
278, doi: 10.1109/SISPAD.2011.6035022.
[19] Hui-Wen Cheng, Yung-Yueh Chiu and Yiming Li, "Electrical characteristic
fluctuation of 16 nm MOSFETs induced by random dopants and interface traps," 2011
IEEE International Conference on IC Design & Technology, Kaohsiung, Taiwan,
2011, pp. 1-4, , doi: 10.1109/ICICDT.2011.5783187.
[20] Steve S. Chung, "The variability issues in small scale strained CMOS devices:
Random dopant and trap induced fluctuations," 2012 International Semiconductor
Conference Dresden-Grenoble (ISCDG), Grenoble, France, 2012, pp. 107-111, doi:
10.1109/ISCDG.2012.6359979.
[21] E. R. Hsieh, Steve S. Chung, C. H. Tsai, R. M. Huang, C. T. Tsai and C. W. Liang,
"A novel and direct experimental observation of the discrete dopant effect in ultrascaled
CMOS devices," 2011 Symposium on VLSI Technology - Digest of Technical
Papers, Kyoto, Japan, 2011, pp. 194-195.
[22] S. Gupta, S. K. Singh, R. A. Vega and A. Dixit, "Effective Channel Mobility
Extraction and Modeling of 10-nm Bulk CMOS FinFETs in Cryogenic Temperature
Operation for Quantum Computing Applications," in IEEE Transactions on Electron
Devices, vol. 70, no. 4, pp. 1815-1822, April 2023, doi: 10.1109/TED.2023.3244159.
[23] Yuan Chen, Lynett Westergard, Curtis Billman, Rosa Leon, Tuan Vo, Mark White,
Mohammad Mojarradi, and Elizabeth Kolawa, "Cryogenic Reliability Impact on
Analog Circuits at Extreme Low Temperatures," 2007 IEEE International Reliability
Physics Symposium Proceedings. 45th Annual, Phoenix, AZ, USA, 2007, pp. 156-
160, doi: 10.1109/RELPHY.2007.369885.
[24] A. Grill, E. Bury, J. Michl, S. Tyaginov, D. Linten, T. Grasser, B. Parvais, B. Kaczer,
M. Waltl, and I. Radu, "Reliability and Variability of Advanced CMOS Devices at
Cryogenic Temperatures," IEEE International Reliability Physics Symposium (IRPS),,
Dallas, TX, USA, 2020, pp. 1-6, doi: 10.1109/IRPS45951.2020.9128316.
[25] E Ray Hsieh, Zih Ying Wang, Yi Shiang Huang, Ting Cun Hung, Ruei Yang Lyu and
Kuan Yi Lee, "Cryogenic Quasi-Ballistic Transport Enhanced by Strained Silicon
Technologies in 14-nm Complementary Fin Field Effect Transistors Through Virtual
Source Model," in IEEE Transactions on Electron Devices, vol. 69, no. 7, pp. 3575-
3580, July 2022, doi: 10.1109/TED.2022.3175675.
[26] X. Zhang, P. Mehr, D. Vasileska and T. Thornton, "Self-Heating in SOI MOSFETs at
the 45nm Node," 2018 IEEE 13th Nanotechnology Materials and Devices Conference
(NMDC), Portland, OR, USA, 2018, pp. 1-4, doi: 10.1109/NMDC.2018.8605870.
[27] P. Saha, "Three Dimensional Design and Implementation of Doped-Pocket Substrate
in N-MOSFET," 2018 IEEE International Conference on System, Computation,
Automation and Networking (ICSCA), Pondicherry, India, 2018, pp. 1-5, doi:
10.1109/ICSCAN.2018.8541208.
[28] P. Saha and B. Goswami, "Simulation Modelling and Study on the Impacts of
Substrate Concentration and Gate Work Function in MOSFET having Doped-Pocket
Substrate," 2018 International Conference on Computing, Power and Communication
Technologies (GUCON), Greater Noida, India, 2018, pp. 1133-1135, doi:
10.1109/GUCON.2018.8675078.
[29] K. Tachiki, T. Ono, T. Kobayashi and T. Kimoto, "Short-Channel Effects in SiC
MOSFETs Based on Analyses of Saturation Drain Current," in IEEE Transactions on
Electron Devices, vol. 68, no. 3, pp. 1382-1384, March 2021, doi:
10.1109/TED.2021.3053518.
[30] J. -K. Hsia, C. -H. Shih, T. -S. Kang, N. D. Chien and N. Van Kien, "Fringing field
and short channel effects in thin-body SOI MOSFETs with shallow source/drain,"
2013 14th International Conference on Ultimate Integration on Silicon (ULIS),
Coventry, UK, 2013, pp. 129-132, doi: 10.1109/ULIS.2013.6523530.
[31] Frank, Laux and Fischetti, "Monte Carlo simulation of a 30 nm dual-gate MOSFET:
how short can Si go?," 1992 International Technical Digest on Electron Devices
Meeting, San Francisco, CA, USA, 1992, pp. 553-556, doi:
10.1109/IEDM.1992.307422.
[32] H.-S. P. Wong, D. J. Frank and P. M. Solomon, "Device design considerations for
double-gate, ground-plane, and single-gated ultra-thin SOI MOSFET′s at the 25 nm
channel length generation," International Electron Devices Meeting 1998. Technical
Digest (Cat. No.98CH36217), San Francisco, CA, USA, 1998, pp. 407-410, doi:
10.1109/IEDM.1998.746385.
[33] A. Gill, C. Madhu and P. Kaur, "Investigation of short channel effects in Bulk
MOSFET and SOI FinFET at 20nm node technology," 2015 Annual IEEE India
Conference (INDICON), New Delhi, India, 2015, pp. 1-4, doi:
10.1109/INDICON.2015.7443263.
[34] Q. Zhang et al., "Experimental Study of Gate-First FinFET Threshold-Voltage
Mismatch," in IEEE Transactions on Electron Devices, vol. 61, no. 2, pp. 643-646,
Feb. 2014, doi: 10.1109/TED.2013.2295715.
[35] P. Jay and A. D. Darji, "Analysis of the source/drain parasitic resistance and
capacitance depending on geometry of FinFET," 2015 11th Conference on Ph.D.
Research in Microelectronics and Electronics (PRIME), Glasgow, UK, 2015, pp. 298-
301, doi: 10.1109/PRIME.2015.7251394. |