博碩士論文 110521171 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:18.217.189.152
姓名 林睿耆(Rui-Qi Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 極低溫下鰭式場效電晶體和平面場效電晶體之隨機摻雜凍結效應的實驗分析
(Experimental Analysis of Dopant Freeze-out Effect on Cryogenic FinFETs and Planar CMOS Devices)
相關論文
★ 基於十六奈米鰭式場效電晶體平台實現通道轟擊電離編程機制之低成本高速嵌入式動態隨機存取記憶體★ 具有通道熱電子注入編程能力的40nm 4kb 1T OTP陣列的設計和實現
★ 通過虛擬源極傳輸模型對16-nm應變矽鰭式場效電晶體低溫準彈道傳輸的電性變化建模★ 基於閾值電壓電性擾動所實現之高速亂數產生率的40-nm 4T-SRAM真亂數產生器記憶體矩陣晶片
★ 多阻態存取1T1R電阻式記憶體矩陣晶片的三態內容定址記憶體的設計和實現★ 新穎的多阻態之真亂數產⽣器由 40nm電阻式記憶體陣列實現
★ 40奈米之電阻式記憶體陣列透過啟動/設置/重置操作物理不可複製功能的綜合研究★ 新穎極小化高密度三維整體堆疊式1T-nF電流熔絲一次性編程記憶體晶片
★ 混和訊號 1.6-3.6GHz 相位旋轉延遲鎖定迴路★ 高速、低能耗、微型1T-PMOS TRNG陣列的設計和特性描述
★ 新型1C1T1R三態內容定址記憶體結合鐵電性與憶阻器功能實現高性能記憶體內搜尋
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-17以後開放)
摘要(中) 隨著科技進步,太空科技的發展和量子電腦的推出,使得量子元件的研究變得尤為重要。因此對這些元件的研究需求大幅增加。極低溫 (Cryogenic Temperature) 金屬氧化物半導體場效電晶體 (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET) 元件在廣泛的應用在量子電腦中,因為量子電腦主要運行在極低溫環境下。因此了解極低溫
環境下的元件特性是發展量子電腦的重要課題之一。在元件持續微縮的過程中,它們依然會受到許多變異源的影響,從而導致電性變化。然而對於極低溫環境下這些影響元件電性的變異源的研究相當稀少。
本研究針對十六奈米鰭式場效電晶體(Fin Field Effect Transistors, FinFETs)和三十六奈米平面場效電晶體(Planar Field Effect Transistors, Planar FETs)在極低溫下的製程變異源中的隨機摻雜擾動(Random Dopant Fluctuation, RDF)進行探討。首先通過基本的電性量測分析,了解低溫環境下的元件特性,接著通過大量量測獲得進行隨機摻雜擾動分析所需的數據,隨後進行離散摻雜劑分析(Discrete Dopant Profiling, DDP),觀察摻雜濃度分布,並分析隨機摻雜擾動的現象,最後分析隨機摻雜擾動影響的組成成分。
從實驗結果來看在極低溫環境下的隨機摻雜擾動的現象是較為明顯的,並且是會影響到電晶體的特性,使Vth 產生擾動,進而影響到汲極電流。
摘要(英) With the advancement of technology, the development of space technology and the introduction of quantum computers have made the research of quantum components particularly important. Consequently, the demand for research on these components has significantly increased. Cryogenic temperature metal-oxide-semiconductor field-effect
transistor (MOSFET) devices are widely used in quantum computers because they primarily operate in extremely low-temperature environments.
Therefore, understanding the characteristics of components in cryogenic environments is a crucial topic for the development of quantum computers. During the continuous miniaturization of components, they are still affected by various sources of variation, leading to changes in electrical properties. However, research on the sources of variation that affects the electrical properties of components in cryogenic environments is relatively scarce.
This study investigates the random dopant fluctuation (RDF) in 16nm FinFETs and 36nm Planar FETs under cryogenic conditions. First, basic electrical measurements are conducted to understand the characteristics of the components in low-temperature environments. Then,
extensive measurements are performed to obtain the data required for the analysis of random dopant fluctuations. Subsequently, the discrete dopant profiling (DDP) is conducted to observe the distribution of dopant concentrations and analyze the phenomena of random dopant
fluctuations. Finally, the components affected by random dopant fluctuations are analyzed.
The experimental results indicate that the phenomenon of random dopant fluctuation in cryogenic environments is quite pronounced and affects the characteristics of transistors,
causing threshold voltage (Vth) fluctuations and consequently impacting the drain current.
關鍵字(中) ★ 鰭式場效電晶體
★ 平面場效電晶體
★ 隨機摻雜擾動
★ 極低溫
關鍵字(英)
論文目次 摘要 .................................................................................................................... I
Abstract ............................................................................................................ II
致謝 ................................................................................................................. III
圖目錄 ............................................................................................................. VI
一、導論 ........................................................................................................... 1
1-1 背景 ....................................................................................................... 1
1-2 研究動機 ............................................................................................... 3
1-3 論文架構 ............................................................................................... 4
二、元件介紹及實驗規劃 ............................................................................... 6
2-1 平面場效電晶體(Planar FETs) ............................................................. 6
2-2 鰭式場效電晶體(FinFETs) ................................................................... 6
2-3 實驗規劃與測量儀器 ........................................................................... 7
三、實驗方法 ................................................................................................... 9
3-1 量測方式 ............................................................................................... 9
3-2 參數分析 ............................................................................................... 9
3-3 多變數分析 ......................................................................................... 10
四、極低溫電性分析 ..................................................................................... 12
4-1 極低溫Planar FETs 電性分析 ........................................................... 12
4-2 極低溫FinFETs 電性分析 ................................................................. 15
五、極低溫離散摻雜劑分析 ......................................................................... 18
5-1 離散摻雜劑分析(Discrete Dopant Profiling, DDP) ........................... 18
5-2 Planar FETs 極低溫RDF 分析 ........................................................... 22
5-3 FinFETs 極低溫RDF 分析 ................................................................ 25
5-4 Planar FETs 和FinFETs 之比較 ......................................................... 28
六、RDF 影響組成分析 ................................................................................ 40
6-1 Planar FETs 影響組成分析 ................................................................ 40
6-2 FinFETs 影響組成分析 ...................................................................... 54
七、結論 ......................................................................................................... 68
Reference ......................................................................................................... 69
參考文獻 [1] Hua Yu Gou, Yu Chen, Mian Gang Tang, Rui Bin Zhao, Xin Shuai Tan, and Li Yan,
"Dynamic-Switching Energy Dissipation Behaviorsof Cryogenic Power MOSFET at
77 K," IEEE Transactions on Applied Superconductivity, vol. 31, no. 8, pp. 1-2, Nov.
2021, Art no. 0603402, doi: 10.1109/TASC.2021.3108731.
[2] Arnout Beckers, Farzan Jazaeri, Andrea Ruffino, Claudio Bruschini, Andrea
Baschirotto, and Christian Enz, "Cryogenic Characterization of 28 nm Bulk CMOS
Technology for Quantum Computing, " European Solid-State Device Research
Conference, pp. 62-65, doi: 10.1109/ESSDERC.2017.8066592.
[3] Davide Braga, Shaorui Li, and Farah Fahim, "Cryogenic Electronics Development for
High-Energy Physics: An Overview of Design Considerations, Benefits, and Unique
Challenges," IEEE Solid-State Circuits Magazine, vol. 13, no. 2, pp. 36-45, Spring
2021, doi: 10.1109/MSSC.2021.3072804.
[4] Arnout Beckers, Farzan Jazaeri, and Christian Enz, "Inflection Phenomenon in
Cryogenic MOSFET Behavior," IEEE Transactions on Electron Devices, vol. 67, no.
3, pp. 1357-1360, March 2020 , doi: 10.1109/TED.2020.2965475.
[5] W. Feng, K. Yamada and K. Ohmori, "Random telegraph noise induced drain-current
fluctuation during dynamic gate bias in Si MOSFETs," 2013 22nd International
Conference on Noise and Fluctuations (ICNF), Montpellier, France, 2013, pp. 1-4,
doi: 10.1109/ICNF.2013.6578880.
[6] E. R. Hsieh, P. Y. Lu, Steve S. Chung, J. C. Ke, C. W. Yang, C. T. Tsai, T. R. Yew.,
"The RTN measurement technique on leakage path finding in advanced high-k metal
gate CMOS devices," 2015 IEEE 22nd International Symposium on the Physical and
Failure Analysis of Integrated Circuits, Hsinchu, Taiwan, 2015, pp. 154-457, doi:10.1109/IPFA.2015.7224355.
[7] C. M. Chang , Steve S. Chung, Y. S. Hsieh, L. W. Cheng, C. T. Tsai, G. H. Ma, S. C.
Chien, S. W. Sun., "The observation of trapping and detrapping effects in high-k gate
dielectric MOSFETs by a new gate current Random Telegraph Noise (IG-RTN)
approach," 2008 IEEE International Electron Devices Meeting, San Francisco, CA,
USA, 2008, pp. 1-4, doi: 10.1109/IEDM.2008.4796815.
[8] L. C. Lin, Z. Y. Wang, M. Y. Lee, J. K. Chang, E. R. Hsieh, J. C. Guo, and Steve S.
Chung., "A Built-in Spice Time-domain Variation Model of the BTI-induced Random
Trap Fluctuation (RTF) in 14 nm FinFETs," 2022 IEEE Silicon Nanoelectronics
Workshop (SNW), Honolulu, HI, USA, 2022, pp. 1-2, doi:
10.1109/SNW56633.2022.9889071.
[9] E. R. Hsieh, Y. H. Ye, Y. S. Wu, C. F. Huang,P. S. Huang, Y. S. Huang, M. L. Miu,
H. S. Su, S. Y. Huang, and S. M. Lu, "Positive-Bias-Temperature-Instability Induced
Random-Trap-Fluctuation Enhanced Physical Unclonable Functions on 14-nm
nFinFETs," in IEEE Electron Device Letters, vol. 43, no. 9, pp. 1396-1399, Sept. 2022,
doi: 10.1109/LED.2022.3188492.
[10] Y. Li and H. -W. Cheng, "Random Work-Function-Induced Threshold Voltage
Fluctuation in Metal-Gate MOS Devices by Monte Carlo Simulation," in IEEE
Transactions on Semiconductor Manufacturing, vol. 25, no. 2, pp. 266-271, May 2012,
doi: 10.1109/TSM.2011.2181964.
[11] Y. Q. Aguiar, F. L. Kastensmidt, C. Meinhardt and R. A. L. Reis, "SET response of
FinFET-based majority voter circuits under work-function fluctuation," 2017 24th
IEEE International Conference on Electronics, Circuits and Systems (ICECS), Batumi,
Georgia, 2017, pp. 282-285, doi: 10.1109/ICECS.2017.8292064.
[12] A. K. Dubey, P. K. Pal, V. Varshney, A. Kumar and R. K. Nagaria, "Impact of
Channel Doping Fluctuation and Metal Gate Work Function Variation in FD-SOIMOSFET for 5nm BOX Thickness," 2019 IEEE Conference on Information and
Communication Technology, Allahabad, India, 2019, pp. 1-4, doi:
10.1109/CICT48419.2019.9066255.
[13] X. Jiang, M. Li, R. Wang, J. Chen and R. Huang, "Investigations on the correlation
between line-edge-roughness (LER) and line-width-roughness (LWR) in nanoscale
CMOS technology," 2012 IEEE 11th International Conference on Solid-State and
Integrated Circuit Technology, Xi′an, China, 2012, pp. 1-3, doi:
10.1109/ICSICT.2012.6466733.
[14] X. Jiang, R. Wang, T. Yu, J. Chen and R. Huang, "Investigations on Line-Edge
Roughness (LER) and Line-Width Roughness (LWR) in Nanoscale CMOS
Technology: Part I–Modeling and Simulation Method," in IEEE Transactions on
Electron Devices, vol. 60, no. 11, pp. 3669-3675, Nov. 2013, doi:
10.1109/TED.2013.2283518
[15] R. Wang, Xiaobo Jiang , Tao Yu, Jiewen Fan, Jiang Chen, David Z. Pan, Ru Huang .,
"Investigations on Line-Edge Roughness (LER) and Line-Width Roughness (LWR)
in Nanoscale CMOS Technology: Part II–Experimental Results and Impacts on
Device Variability," in IEEE Transactions on Electron Devices, vol. 60, no. 11, pp.
3676-3682, Nov. 2013, doi: 10.1109/TED.2013.2283517.
[16] N. Damrongplasit, S. H. Kim, C. Shin and T. -J. K. Liu, "Impact of Gate Line-Edge
Roughness (LER) Versus Random Dopant Fluctuations (RDF) on Germanium-Source
Tunnel FET Performance," in IEEE Transactions on Nanotechnology, vol. 12, no. 6,
pp. 1061-1067, Nov. 2013, doi: 10.1109/TNANO.2013.2278153.
[17] C. -Y. Chen, W. -T. Huang and Y. Li, "Electrical characteristic and power
consumption fluctuations of trapezoidal bulk FinFET devices and circuits induced by
random line edge roughness," Sixteenth International Symposium on Quality
Electronic Design, Santa Clara, CA, USA, 2015, pp. 61-64, doi:10.1109/ISQED.2015.7085399.
[18] C. L. Alexander and A. Asenov, "Statistical MOSFET current variation due to
variation in surface roughness scattering," 2011 International Conference on
Simulation of Semiconductor Processes and Devices, Osaka, Japan, 2011, pp. 275-
278, doi: 10.1109/SISPAD.2011.6035022.
[19] Hui-Wen Cheng, Yung-Yueh Chiu and Yiming Li, "Electrical characteristic
fluctuation of 16 nm MOSFETs induced by random dopants and interface traps," 2011
IEEE International Conference on IC Design & Technology, Kaohsiung, Taiwan,
2011, pp. 1-4, , doi: 10.1109/ICICDT.2011.5783187.
[20] Steve S. Chung, "The variability issues in small scale strained CMOS devices:
Random dopant and trap induced fluctuations," 2012 International Semiconductor
Conference Dresden-Grenoble (ISCDG), Grenoble, France, 2012, pp. 107-111, doi:
10.1109/ISCDG.2012.6359979.
[21] E. R. Hsieh, Steve S. Chung, C. H. Tsai, R. M. Huang, C. T. Tsai and C. W. Liang,
"A novel and direct experimental observation of the discrete dopant effect in ultrascaled
CMOS devices," 2011 Symposium on VLSI Technology - Digest of Technical
Papers, Kyoto, Japan, 2011, pp. 194-195.
[22] S. Gupta, S. K. Singh, R. A. Vega and A. Dixit, "Effective Channel Mobility
Extraction and Modeling of 10-nm Bulk CMOS FinFETs in Cryogenic Temperature
Operation for Quantum Computing Applications," in IEEE Transactions on Electron
Devices, vol. 70, no. 4, pp. 1815-1822, April 2023, doi: 10.1109/TED.2023.3244159.
[23] Yuan Chen, Lynett Westergard, Curtis Billman, Rosa Leon, Tuan Vo, Mark White,
Mohammad Mojarradi, and Elizabeth Kolawa, "Cryogenic Reliability Impact on
Analog Circuits at Extreme Low Temperatures," 2007 IEEE International Reliability
Physics Symposium Proceedings. 45th Annual, Phoenix, AZ, USA, 2007, pp. 156-
160, doi: 10.1109/RELPHY.2007.369885.
[24] A. Grill, E. Bury, J. Michl, S. Tyaginov, D. Linten, T. Grasser, B. Parvais, B. Kaczer,
M. Waltl, and I. Radu, "Reliability and Variability of Advanced CMOS Devices at
Cryogenic Temperatures," IEEE International Reliability Physics Symposium (IRPS),,
Dallas, TX, USA, 2020, pp. 1-6, doi: 10.1109/IRPS45951.2020.9128316.
[25] E Ray Hsieh, Zih Ying Wang, Yi Shiang Huang, Ting Cun Hung, Ruei Yang Lyu and
Kuan Yi Lee, "Cryogenic Quasi-Ballistic Transport Enhanced by Strained Silicon
Technologies in 14-nm Complementary Fin Field Effect Transistors Through Virtual
Source Model," in IEEE Transactions on Electron Devices, vol. 69, no. 7, pp. 3575-
3580, July 2022, doi: 10.1109/TED.2022.3175675.
[26] X. Zhang, P. Mehr, D. Vasileska and T. Thornton, "Self-Heating in SOI MOSFETs at
the 45nm Node," 2018 IEEE 13th Nanotechnology Materials and Devices Conference
(NMDC), Portland, OR, USA, 2018, pp. 1-4, doi: 10.1109/NMDC.2018.8605870.
[27] P. Saha, "Three Dimensional Design and Implementation of Doped-Pocket Substrate
in N-MOSFET," 2018 IEEE International Conference on System, Computation,
Automation and Networking (ICSCA), Pondicherry, India, 2018, pp. 1-5, doi:
10.1109/ICSCAN.2018.8541208.
[28] P. Saha and B. Goswami, "Simulation Modelling and Study on the Impacts of
Substrate Concentration and Gate Work Function in MOSFET having Doped-Pocket
Substrate," 2018 International Conference on Computing, Power and Communication
Technologies (GUCON), Greater Noida, India, 2018, pp. 1133-1135, doi:
10.1109/GUCON.2018.8675078.
[29] K. Tachiki, T. Ono, T. Kobayashi and T. Kimoto, "Short-Channel Effects in SiC
MOSFETs Based on Analyses of Saturation Drain Current," in IEEE Transactions on
Electron Devices, vol. 68, no. 3, pp. 1382-1384, March 2021, doi:
10.1109/TED.2021.3053518.
[30] J. -K. Hsia, C. -H. Shih, T. -S. Kang, N. D. Chien and N. Van Kien, "Fringing field
and short channel effects in thin-body SOI MOSFETs with shallow source/drain,"
2013 14th International Conference on Ultimate Integration on Silicon (ULIS),
Coventry, UK, 2013, pp. 129-132, doi: 10.1109/ULIS.2013.6523530.
[31] Frank, Laux and Fischetti, "Monte Carlo simulation of a 30 nm dual-gate MOSFET:
how short can Si go?," 1992 International Technical Digest on Electron Devices
Meeting, San Francisco, CA, USA, 1992, pp. 553-556, doi:
10.1109/IEDM.1992.307422.
[32] H.-S. P. Wong, D. J. Frank and P. M. Solomon, "Device design considerations for
double-gate, ground-plane, and single-gated ultra-thin SOI MOSFET′s at the 25 nm
channel length generation," International Electron Devices Meeting 1998. Technical
Digest (Cat. No.98CH36217), San Francisco, CA, USA, 1998, pp. 407-410, doi:
10.1109/IEDM.1998.746385.
[33] A. Gill, C. Madhu and P. Kaur, "Investigation of short channel effects in Bulk
MOSFET and SOI FinFET at 20nm node technology," 2015 Annual IEEE India
Conference (INDICON), New Delhi, India, 2015, pp. 1-4, doi:
10.1109/INDICON.2015.7443263.
[34] Q. Zhang et al., "Experimental Study of Gate-First FinFET Threshold-Voltage
Mismatch," in IEEE Transactions on Electron Devices, vol. 61, no. 2, pp. 643-646,
Feb. 2014, doi: 10.1109/TED.2013.2295715.
[35] P. Jay and A. D. Darji, "Analysis of the source/drain parasitic resistance and
capacitance depending on geometry of FinFET," 2015 11th Conference on Ph.D.
Research in Microelectronics and Electronics (PRIME), Glasgow, UK, 2015, pp. 298-
301, doi: 10.1109/PRIME.2015.7251394.
指導教授 謝易叡 審核日期 2024-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明