參考文獻 |
References
[1] C. L. Ventola, “The Antibiotic Resistance crisis,” P & T : a peer-reviewed Journal for Formulary Management, vol. 40, no. 4, pp. 277–83, Apr. 2015, Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378521/
[2] H. Khabbaz, M. H. Karimi-Jafari, A. A. Saboury, and B. BabaAli, “Prediction of antimicrobial peptides toxicity based on their physico-chemical properties using machine learning techniques,” BMC Bioinformatics, vol. 22, no. 1, Nov. 2021, doi: https://doi.org/10.1186/s12859-021-04468-y.
[3] P. B. Timmons and C. M. Hewage, “HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs neural networks,” Scientific Reports, vol. 10, no. 1, p. 10869, Jul. 2020, doi: https://doi.org/10.1038/s41598-020-67701-3.
[4] M. Salem, A. Keshavarzi Arshadi, and J. S. Yuan, “AMPDeep: hemolytic activity prediction of antimicrobial peptides using transfer learning,” BMC Bioinformatics, vol. 23, no. 1, Sep. 2022, doi: https://doi.org/10.1186/s12859-022-04952-z.
[5] F. Plisson, O. Ramírez-Sánchez, and C. Martínez-Hernández, “Machine learning-guided discovery and design of non-hemolytic peptides,” Scientific Reports, vol. 10, no. 1, Oct. 2020, doi: https://doi.org/10.1038/s41598-020-73644-6.
[6] K. Chaudhary et al., “A Web Server and Mobile App for Computing Hemolytic Potency of Peptides,” Scientific Reports, vol. 6, no. 1, Mar. 2016, doi: https://doi.org/10.1038/srep22843.
[7] S. Yang and P. Xu, “HemoDL: Hemolytic peptides prediction by double ensemble engines from Rich sequence-derived and transformer-enhanced information,” Analytical Biochemistry, vol. 690, p. 115523, Jul. 2024, doi: https://doi.org/10.1016/j.ab.2024.115523.
[8] R. Sharma, S. Shrivastava, S. K. Singh, A. Kumar, A. K. Singh, and S. Saxena, “EnDL-HemoLyt: Ensemble Deep Learning-Based Tool for Identifying Therapeutic Peptides With Low Hemolytic Activity,” IEEE Journal of Biomedical and Health Informatics, vol. 28, no. 4, pp. 1896–1905, Apr. 2024, doi: https://doi.org/10.1109/jbhi.2023.3264941.
[9] M. Pirtskhalava et al., “DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics,” Nucleic Acids Research, vol. 49, no. D1, pp. D288–D297, Nov. 2020, doi: https://doi.org/10.1093/nar/gkaa991.
[10] A. Gautam et al., “Hemolytik: a database of experimentally determined hemolytic and non-hemolytic peptides,” Nucleic Acids Research, vol. 42, no. Database issue, pp. D444–D449, Jan. 2014, doi: https://doi.org/10.1093/nar/gkt1008.
[11] U. Gawde et al., “CAMPR4: a database of natural and synthetic antimicrobial peptides,” Nucleic Acids Research, vol. 51, no. D1, pp. D377–D383, Nov. 2022, doi: https://doi.org/10.1093/nar/gkac933.
[12] V. V. Kleandrova, J. M. Ruso, A. Speck-Planche, and M. N. Dias Soeiro Cordeiro, “Enabling the Discovery and Virtual Screening of Potent and Safe Antimicrobial Peptides. Simultaneous Prediction of Antibacterial Activity and Cytotoxicity,” ACS Combinatorial Science, vol. 18, no. 8, pp. 490–498, Jul. 2016, doi: https://doi.org/10.1021/acscombsci.6b00063.
[13] V. Vacic, L. M. Iakoucheva, and P. Radivojac, “Two Sample Logo: a graphical representation of the differences between two sets of sequence alignments,” Bioinformatics, vol. 22, no. 12, pp. 1536–1537, Apr. 2006, doi: https://doi.org/10.1093/bioinformatics/btl151.
[14] Z. Chen et al., “iFeature: a Python package and web server for features extraction and selection from protein and peptide sequences,” Bioinformatics, vol. 34, no. 14, pp. 2499–2502, Mar. 2018, doi: https://doi.org/10.1093/bioinformatics/bty140.
[15] S. Kawashima, P. Pokarowski, M. Pokarowska, A. Kolinski, T. Katayama, and M. Kanehisa, “AAindex: amino acid index database, progress report 2008,” Nucleic Acids Research, vol. 36, no. Database, pp. D202–D205, Dec. 2007, doi: https://doi.org/10.1093/nar/gkm998.
[16] T.-Y. Lee, S.-A. Chen, H.-Y. Hung, and Y.-Y. Ou, “Incorporating Distant Sequence Features and Radial Basis Function Networks to Identify Ubiquitin Conjugation Sites,” PLoS ONE, vol. 6, no. 3, p. e17331, Mar. 2011, doi: https://doi.org/10.1371/journal.pone.0017331.
[17] Z. Chen, Y.-Z. Chen, X.-F. Wang, C. Wang, R.-X. Yan, and Z. Zhang, “Prediction of Ubiquitination Sites by Using the Composition of k-Spaced Amino Acid Pairs,” PLoS ONE, vol. 6, no. 7, p. e22930, Jul. 2011, doi: https://doi.org/10.1371/journal.pone.0022930.
[18] I. Dubchak, I. Muchnik, S. R. Holbrook, and S. H. Kim, “Prediction of protein folding class using global description of amino acid sequence.,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 19, pp. 8700–8704, Sep. 1995, Accessed: Jul. 09, 2024. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC41034/
[19] K.-C. . Chou, “Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes,” Bioinformatics, vol. 21, no. 1, pp. 10–19, Aug. 2004, doi: https://doi.org/10.1093/bioinformatics/bth466.
[20] A. Kidera, Y. Konishi, M. Oka, T. Ooi, and H. A. Scheraga, “Statistical analysis of the physical properties of the 20 naturally occurring amino acids,” Journal of Protein Chemistry, vol. 4, no. 1, pp. 23–55, Feb. 1985, doi: https://doi.org/10.1007/bf01025492.
[21] A. Elnaggar et al., “ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 10, pp. 7112–7127, Oct. 2022, doi: https://doi.org/10.1109/tpami.2021.3095381.
[22] Z. Lin et al., “Evolutionary-scale prediction of atomic-level protein structure with a language model,” Science, vol. 379, no. 6637, pp. 1123–1130, Mar. 2023, doi: https://doi.org/10.1126/science.ade2574.
[23] C. D. Fjell, J. A. Hiss, R. E. W. Hancock, and G. Schneider, “Designing antimicrobial peptides: form follows function,” Nature Reviews Drug Discovery, vol. 11, no. 1, pp. 37–51, Dec. 2011, doi: https://doi.org/10.1038/nrd3591.
[24] A. T. Müller, G. Gabernet, J. A. Hiss, and G. Schneider, “modlAMP: Python for antimicrobial peptides,” Bioinformatics, vol. 33, no. 17, pp. 2753–2755, May 2017, doi: https://doi.org/10.1093/bioinformatics/btx285.
[25] A. Capecchi, X. Cai, H. Personne, T. Köhler, C. van Delden, and J.-L. Reymond, “Machine learning designs non-hemolytic antimicrobial peptides,” Chemical Science, vol. 12, no. 26, pp. 9221–9232, 2021, doi: https://doi.org/10.1039/d1sc01713f.
[26] M. M. Hasan, N. Schaduangrat, S. Basith, G. Lee, W. Shoombuatong, and B. Manavalan, “HLPpred-Fuse: improved and robust prediction of hemolytic peptide and its activity by fusing multiple feature representation,” Bioinformatics (Oxford, England), vol. 36, no. 11, pp. 3350–3356, Jun. 2020, doi: https://doi.org/10.1093/bioinformatics/btaa160.
[27] H. Moriwaki, Y.-S. Tian, N. Kawashita, and T. Takagi, “Mordred: a molecular descriptor calculator,” Journal of Cheminformatics, vol. 10, no. 1, Feb. 2018, doi: https://doi.org/10.1186/s13321-018-0258-y.
[28] The UniProt Consortium, “UniProt: a worldwide hub of protein knowledge,” Nucleic Acids Research, vol. 47, no. D1, pp. D506–D515, Nov. 2018, doi: https://doi.org/10.1093/nar/gky1049. |