參考文獻 |
[1] S. Wan et al., "High-efficiency segmented thermoelectric power generation modules constructed from all skutterudites," Cell Reports Physical Science, vol. 4, no. 11, p. 101651, 2023/11/15/ 2023, doi: https://doi.org/10.1016/j.xcrp.2023.101651.
[2] 吳世國. "淺談工業廢熱回收." https://learnenergy.tw/index.php?inter=knowledge&caid=4&id=435 (accessed.
[3] 經濟部. "廢熱與廢冷回收技術示範應用專案補助要點." 經濟部能源署. https://www.moeaea.gov.tw/ecw/populace/Law/Content.aspx?menu_id=4340 (accessed.
[4] M. Shahpar, A. Hajinezhad, and S. F. Moosavian, "The influence of diverse climate on the 3E analysis of energy, exergy, and environmental aspects of a hybrid module of thermoelectric generator and photovoltaic cells," Results in Engineering, vol. 22, p. 102337, 2024/06/01/ 2024, doi: https://doi.org/10.1016/j.rineng.2024.102337.
[5] 經濟部能源局. "能源統計手冊." 經濟部能源局. https://www.moeaea.gov.tw/ECW_WEBPAGE/FlipBook/2022EnergyStaHandBook/index.html#p= (accessed.
[6] I. BCS, Waste Heat Recovery: Technology and Opportunities in U.S. Industry. United States, 2008, p. 112.
[7] K. Uchida, M. Ishida, T. Kikkawa, A. Kirihara, T. Murakami, and E. Saitoh, "Longitudinal spin Seebeck effect: from fundamentals to applications," Journal of Physics: Condensed Matter, vol. 26, no. 34, p. 343202, 2014. [Online]. Available: https://iopscience.iop.org/article/10.1088/0953-8984/26/34/343202/pdf.
[8] R. Modak et al., "Phase-transition-induced giant Thomson effect for thermoelectric cooling," Applied Physics Reviews, vol. 9, no. 1, 2022, doi: 10.1063/5.0077497.
[9] P. Sun, K. R. Kumar, M. Lyu, Z. Wang, J. Xiang, and W. Zhang, "Generic Seebeck effect from spin entropy," The Innovation, vol. 2, no. 2, p. 100101, 2021/05/28/ 2021, doi: https://doi.org/10.1016/j.xinn.2021.100101.
[10] H. Lee, "The Thomson effect and the ideal equation on thermoelectric coolers," Energy, vol. 56, pp. 61-69, 2013/07/01/ 2013, doi: https://doi.org/10.1016/j.energy.2013.04.049.
[11] M. Wolf, R. Hinterding, and A. Feldhoff, "High Power Factor vs. High zT—A Review of Thermoelectric Materials for High-Temperature Application," Entropy, vol. 21, no. 11, p. 1058, 2019. [Online]. Available: https://www.mdpi.com/1099-4300/21/11/1058.
[12] M. B. A. Bashir, S. Mohd Said, M. F. M. Sabri, D. A. Shnawah, and M. H. Elsheikh, "Recent advances on Mg2Si1−xSnx materials for thermoelectric generation," Renewable and Sustainable Energy Reviews, vol. 37, pp. 569-584, 2014/09/01/ 2014, doi: https://doi.org/10.1016/j.rser.2014.05.060.
[13] 陳洋元、陳正龍. "熱電於再生能源之運用." https://pb.ps-taiwan.org/modules/news/article.php?storyid=59 (accessed.
[14] Z. Dong et al., "Raman Characterization on Two-Dimensional Materials-Based Thermoelectricity," Molecules, vol. 24, no. 1, p. 88, 2019. [Online]. Available: https://www.mdpi.com/1420-3049/24/1/88.
[15] Y. Li et al., "Realizing high-efficiency thermoelectric module by suppressing donor-like effect and improving preferred orientation in n-type Bi2(Te, Se)3," Science Bulletin, vol. 69, no. 11, pp. 1728-1737, 2024/06/15/ 2024, doi: https://doi.org/10.1016/j.scib.2024.04.034.
[16] Z. Chen et al., "Performance evolution of thermoelectric modules under constant heat flux," Materials Today Physics, vol. 35, p. 101136, 2023/06/01/ 2023, doi: https://doi.org/10.1016/j.mtphys.2023.101136.
[17] Z. Parlak, Y. İslamoğlu, and N. Parlak, "Performance evaluation of an integrated heatsink and thermoelectric module by two-way coupled numerical analysis," International Journal of Thermal Sciences, vol. 197, p. 108809, 2024/03/01/ 2024, doi: https://doi.org/10.1016/j.ijthermalsci.2023.108809.
[18] (2010). The Prospects of Alternatives to Vapor Compression Technology for Space Cooling and Food Refrigeration Applications.
[19] M. Thakkar, A report on "Peltier (thermoelectric) cooling module". 2016.
[20] 朱旭山. 熱電材料與元件之原理與應用. 電子與材料雜誌.
[21] N. Korprasertsak and T. Leephakpreeda, "Maximizing cooling/heating performance of thermoelectric modules across variable thermal loads via optimal control based on COP curves," Heliyon, vol. 10, no. 1, p. e24063, 2024/01/15/ 2024, doi: https://doi.org/10.1016/j.heliyon.2024.e24063.
[22] S. Lv, Z. Qian, D. Hu, X. Li, and W. He, "A Comprehensive Review of Strategies and Approaches for Enhancing the Performance of Thermoelectric Module," Energies, vol. 13, no. 12, p. 3142, 2020. [Online]. Available: https://www.mdpi.com/1996-1073/13/12/3142.
[23] L. Lu, M. O. Lai, and M. L. Hoe, "Formaton of nanocrystalline Mg2Si and Mg2Si dispersion strengthened Mg-Al alloy by mechanical alloying," Nanostructured Materials, vol. 10, no. 4, pp. 551-563, 1998/05/01/ 1998, doi: https://doi.org/10.1016/S0965-9773(98)00102-0.
[24] N. Hirayama et al., "First-principles investigation of structural, electronic, and thermoelectric properties of n- and p-type Mg2Si," Journal of Materials Research, vol. 30, no. 17, pp. 2564-2577, 2015, doi: 10.1557/jmr.2015.206.
[25] H. Kim, J. Choi, H. J. Sohn, and T. Kang, "The Insertion Mechanism of Lithium into Mg2Si Anode Material for Li‐Ion Batteries," Journal of The Electrochemical Society, vol. 146, no. 12, p. 4401, 1999/12/01 1999, doi: 10.1149/1.1392650.
[26] Q. D. Qin, Y. G. Zhao, W. Zhou, and P. J. Cong, "Effect of phosphorus on microstructure and growth manner of primary Mg2Si crystal in Mg2Si/Al composite," Materials Science and Engineering: A, vol. 447, no. 1, pp. 186-191, 2007/02/25/ 2007, doi: https://doi.org/10.1016/j.msea.2006.10.076.
[27] X. Hu, D. Mayson, and M. R. Barnett, "Synthesis of Mg2Si for thermoelectric applications using magnesium alloy and spark plasma sintering," Journal of Alloys and Compounds, vol. 589, pp. 485-490, 2014/03/15/ 2014, doi: https://doi.org/10.1016/j.jallcom.2013.11.092.
[28] J.-i. Tani and H. Kido, "Thermoelectric properties of Al-doped Mg2Si1−xSnx (x≦0.1)," Journal of Alloys and Compounds, vol. 466, no. 1, pp. 335-340, 2008/10/20/ 2008, doi: https://doi.org/10.1016/j.jallcom.2007.11.029.
[29] J. Camut, P. Ziolkowski, P. Ponnusamy, C. Stiewe, E. Mueller, and J. de Boor, "Efficiency Measurement and Modeling of a High-Performance Mg2(Si,Sn)-Based Thermoelectric Generator," Advanced Engineering Materials, vol. 25, no. 1, p. 2200776, 2023/01/01 2023, doi: https://doi.org/10.1002/adem.202200776.
[30] G. K. Goyal and T. Dasgupta, "Fabrication and testing of Mg2Si1-xSnx based thermoelectric generator module," Materials Science and Engineering: B, vol. 272, p. 115338, 2021/10/01/ 2021, doi: https://doi.org/10.1016/j.mseb.2021.115338. |