博碩士論文 111521078 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:170 、訪客IP:3.146.105.212
姓名 洪嘉婕(Chia-Chieh Hung)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 P型鎂矽錫熱電材料之接觸金屬及模組製作
(Study of Contact Metals of P-type Mg2(SiSn) Thermoelectric Materials and Modules)
相關論文
★ 以熱熔異質磊晶成長法製造之鍺光偵測器★ 在SOI基板上以快速熱熔法製造高品質鍺及近紅外線光偵測元件之研製
★ 鉭錳合金及銅鍺化合物應用於積體電路後段製程中銅導線之研究★ 快速熱熔磊晶成長法製造側向PIN(Ge-Ge-Si)光偵測器
★ 二維薄膜及三維塊材Seebeck係數量測★ 塊材、薄膜與奈米線之熱導係數量測方法探討
★ 以快速熱熔異質磊晶成長法製作鍺矽累增型光偵測器★ 以快速熱熔融磊晶成長法製作 鍺錫合金PIN型光偵測器
★ 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究★ P型金屬氧化物薄膜的製備應用於軟性電子
★ 金屬氧化物製備應用於軟性電子元件★ 超導材料釔鋇銅氧化物熱電特性量測分析
★ 鎂矽錫合金熱電特性研究及應用★ 矽基熱電模組開發及特性研究
★ P型金屬氧化物與硫化物之研究★ 物聯網之熱感測器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 工業迅速發展,以化石燃料為主的發電方式所引發的環境問題日益嚴重,解決能源短缺和氣候暖化的議題成為熱門話題。在眾多再生能源中,熱電材料因其依據Seebeck效應和Peltier效應,利用溫差產生電位差,能夠直接將熱能轉換為電能或將電能轉換為熱能,被認為具有極大的發展潛力。
隨著能源需求的增加和減少碳排放的壓力,熱電發電的研究重點在於提高ZT值以提升能量轉換效率[1]。從材料和結構等方面進行的開發,使其在廢熱回收、可穿戴電子設備、航太和環境監測等領域展現了應用潛力,熱電材料在綠色能源轉換中的地位日益受到重視,未來有望在工業和民用領域中廣泛應用。
本論文以P型Mg2(SiSn)熱電材料為研究重點,分析各種金屬接觸對試片輸出特性和機械強度的影響,並嘗試找出最佳的試片接合方式。將P型和N型試片接合成單對元件,組成可輸出1V的熱電模組,並進行模組輸出電性的量測分析。
結果顯示,Al箔片+Cu片與純試片的化合程度最為完善,Cu片在焊接測試中的機械強度也最好。將金屬及P型粉末與N型粉末使用方形鎢鋼模具冷壓成塊材,經高溫退火後製成的單對元件量測出的平均電壓約為0.032523V,平均Seebeck係數約為265.926μV/K。使用銀漿+WU-4作為焊料,雲母片作為隔絕,焊接成的四對元件電壓為0.101904V,Seebeck係數約為640.906μV/K。最終組成的40對PN熱電模組達到輸出0.987672V,Seebeck係數為11957.29μV/K。
摘要(英) Industrial development is advancing rapidly, exacerbating environmental concerns due to the predominant use of fossil fuels for energy generation. Issues such as energy shortages and climate change have become pressing topics of discussion. In the realm of renewable energy, thermoelectric materials are emerging as a promising solution. By leveraging the Seebeck effect and the Peltier effect, these materials can harness temperature differentials to generate a potential difference, facilitating the direct conversion of heat into electricity and vice versa.
With escalating energy demands and the urgent need to reduce carbon emissions, current research in thermoelectric power generation focuses on enhancing the ZT value to improve energy conversion efficiency. This involves advancements in materials and structural designs, showcasing potential applications in waste heat recovery, wearable electronics, aerospace, and environmental monitoring. The pivotal role of thermoelectric materials in green energy conversion is increasingly acknowledged, with expectations of widespread adoption across industrial and civilian sectors.
This thesis specifically investigates P-type Mg2(SiSn) thermoelectric materials, examining how various metal contacts impact the performance characteristics and mechanical robustness of samples. The study aims to optimize bonding methods for these samples, integrating P-type and N-type materials into single-pair elements and assembling them into thermoelectric modules capable of generating 1V of output. The electrical properties of these modules are meticulously measured and analyzed.
Among the metal contact configurations explored, the combination of Al foil and Cu sheet with pure samples exhibited superior integration, with Cu sheet demonstrating exceptional mechanical strength in welding tests. Using a square tungsten steel mold, metal, P-type powder, and N-type powder were cold-pressed into blocks and annealed at high temperatures. The resulting single-pair element achieved an average voltage of approximately 0.032523V and an average Seebeck coefficient of about 265.926 μV/K. Utilizing silver paste and WU-4 solder, with mica sheets as insulators, the four-pair element delivered a voltage of 0.101904V and a Seebeck coefficient of approximately 640.906 μV/K. Ultimately, the assembly of a 40-pair PN thermoelectric module achieved an output of 0.987672V and a Seebeck coefficient of 11957.29 μV/K.
關鍵字(中) ★ 熱電材料
★ 熱電元件
★ 熱電模組
★ 熱電轉換
★ 熱電優值
★ 鎂矽錫
關鍵字(英) ★ Seebeck effect
★ Thermoelectric module
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
1.1 前言 1
第二章 熱電原理與參考文獻 3
2.1 熱電效應 3
2.1.1 Seebeck effect 3
2.1.2 Thomson effect 4
2.1.3 Peltier effect 5
2.2 熱電優質 6
2.3 熱電模組 9
2.4 熱電材料應用 11
2.4.1 熱電發電 11
2.4.2 熱電致冷 11
2.5 文獻回顧 12
2.5.1 P-type Al 摻雜之Mg2Si 12
2.5.2 Mg2(SiSn)材料 14
2.6 研究動機 17
第三章 量測儀器 19
3.1 熱電特性測量 19
3.1.1 電導率量測 19
3.1.2 Seebeck coefficient 量測 21
3.1.3 密度量測 22
3.1.4 熱擴散量測 23
3.1.5 比熱量測 24
3.1.6 熱導率量測 25
3.2 材料分析 26
3.2.1 X光繞射儀 26
3.2.2 掃描式電子顯微鏡 27
3.2.3 超高解析冷場發射掃描式電子顯微鏡(CFE-SEM) 28
3.3 元件電性量測 29
第四章 實驗方法與步驟 31
4.1 前言 31
4.2 實驗流程 32
4.3 P-type Si Powder製程 33
4.4 Mg2Si Powder製程 37
4.5 P-type Mg2(SiSn) contact metal製程 41
4.6 元件製作 44
4.6.1 試片平面結構 44
4.6.1.1 焊接 44
4.6.1.2 Al片橋接退火 45
4.6.1.3 Epoxy Resin + Silver Adhesive 47
4.6.2 試片垂直結構 48
4.6.2.1 PN Junction 48
4.7 熱電模組製作 49
第五章 實驗結果與討論 51
5.1 Mg2Si 粒徑 51
5.2 隔絕材料分析 52
5.3 鎂矽錫外部contact metal測試 58
5.4 元件接合測試 60
5.4.1 焊接元件測試 60
5.4.2 PN元件內部界面金屬測試 62
5.5 模組橋接測試 64
5.6 熱電模組輸出電性分析 66
第六章 結論與未來展望 73
第七章 參考文獻 74
參考文獻 [1] S. Wan et al., "High-efficiency segmented thermoelectric power generation modules constructed from all skutterudites," Cell Reports Physical Science, vol. 4, no. 11, p. 101651, 2023/11/15/ 2023, doi: https://doi.org/10.1016/j.xcrp.2023.101651.
[2] 吳世國. "淺談工業廢熱回收." https://learnenergy.tw/index.php?inter=knowledge&caid=4&id=435 (accessed.
[3] 經濟部. "廢熱與廢冷回收技術示範應用專案補助要點." 經濟部能源署. https://www.moeaea.gov.tw/ecw/populace/Law/Content.aspx?menu_id=4340 (accessed.
[4] M. Shahpar, A. Hajinezhad, and S. F. Moosavian, "The influence of diverse climate on the 3E analysis of energy, exergy, and environmental aspects of a hybrid module of thermoelectric generator and photovoltaic cells," Results in Engineering, vol. 22, p. 102337, 2024/06/01/ 2024, doi: https://doi.org/10.1016/j.rineng.2024.102337.
[5] 經濟部能源局. "能源統計手冊." 經濟部能源局. https://www.moeaea.gov.tw/ECW_WEBPAGE/FlipBook/2022EnergyStaHandBook/index.html#p= (accessed.
[6] I. BCS, Waste Heat Recovery: Technology and Opportunities in U.S. Industry. United States, 2008, p. 112.
[7] K. Uchida, M. Ishida, T. Kikkawa, A. Kirihara, T. Murakami, and E. Saitoh, "Longitudinal spin Seebeck effect: from fundamentals to applications," Journal of Physics: Condensed Matter, vol. 26, no. 34, p. 343202, 2014. [Online]. Available: https://iopscience.iop.org/article/10.1088/0953-8984/26/34/343202/pdf.
[8] R. Modak et al., "Phase-transition-induced giant Thomson effect for thermoelectric cooling," Applied Physics Reviews, vol. 9, no. 1, 2022, doi: 10.1063/5.0077497.
[9] P. Sun, K. R. Kumar, M. Lyu, Z. Wang, J. Xiang, and W. Zhang, "Generic Seebeck effect from spin entropy," The Innovation, vol. 2, no. 2, p. 100101, 2021/05/28/ 2021, doi: https://doi.org/10.1016/j.xinn.2021.100101.
[10] H. Lee, "The Thomson effect and the ideal equation on thermoelectric coolers," Energy, vol. 56, pp. 61-69, 2013/07/01/ 2013, doi: https://doi.org/10.1016/j.energy.2013.04.049.
[11] M. Wolf, R. Hinterding, and A. Feldhoff, "High Power Factor vs. High zT—A Review of Thermoelectric Materials for High-Temperature Application," Entropy, vol. 21, no. 11, p. 1058, 2019. [Online]. Available: https://www.mdpi.com/1099-4300/21/11/1058.
[12] M. B. A. Bashir, S. Mohd Said, M. F. M. Sabri, D. A. Shnawah, and M. H. Elsheikh, "Recent advances on Mg2Si1−xSnx materials for thermoelectric generation," Renewable and Sustainable Energy Reviews, vol. 37, pp. 569-584, 2014/09/01/ 2014, doi: https://doi.org/10.1016/j.rser.2014.05.060.
[13] 陳洋元、陳正龍. "熱電於再生能源之運用." https://pb.ps-taiwan.org/modules/news/article.php?storyid=59 (accessed.
[14] Z. Dong et al., "Raman Characterization on Two-Dimensional Materials-Based Thermoelectricity," Molecules, vol. 24, no. 1, p. 88, 2019. [Online]. Available: https://www.mdpi.com/1420-3049/24/1/88.
[15] Y. Li et al., "Realizing high-efficiency thermoelectric module by suppressing donor-like effect and improving preferred orientation in n-type Bi2(Te, Se)3," Science Bulletin, vol. 69, no. 11, pp. 1728-1737, 2024/06/15/ 2024, doi: https://doi.org/10.1016/j.scib.2024.04.034.
[16] Z. Chen et al., "Performance evolution of thermoelectric modules under constant heat flux," Materials Today Physics, vol. 35, p. 101136, 2023/06/01/ 2023, doi: https://doi.org/10.1016/j.mtphys.2023.101136.
[17] Z. Parlak, Y. İslamoğlu, and N. Parlak, "Performance evaluation of an integrated heatsink and thermoelectric module by two-way coupled numerical analysis," International Journal of Thermal Sciences, vol. 197, p. 108809, 2024/03/01/ 2024, doi: https://doi.org/10.1016/j.ijthermalsci.2023.108809.
[18] (2010). The Prospects of Alternatives to Vapor Compression Technology for Space Cooling and Food Refrigeration Applications.
[19] M. Thakkar, A report on "Peltier (thermoelectric) cooling module". 2016.
[20] 朱旭山. 熱電材料與元件之原理與應用. 電子與材料雜誌.
[21] N. Korprasertsak and T. Leephakpreeda, "Maximizing cooling/heating performance of thermoelectric modules across variable thermal loads via optimal control based on COP curves," Heliyon, vol. 10, no. 1, p. e24063, 2024/01/15/ 2024, doi: https://doi.org/10.1016/j.heliyon.2024.e24063.
[22] S. Lv, Z. Qian, D. Hu, X. Li, and W. He, "A Comprehensive Review of Strategies and Approaches for Enhancing the Performance of Thermoelectric Module," Energies, vol. 13, no. 12, p. 3142, 2020. [Online]. Available: https://www.mdpi.com/1996-1073/13/12/3142.
[23] L. Lu, M. O. Lai, and M. L. Hoe, "Formaton of nanocrystalline Mg2Si and Mg2Si dispersion strengthened Mg-Al alloy by mechanical alloying," Nanostructured Materials, vol. 10, no. 4, pp. 551-563, 1998/05/01/ 1998, doi: https://doi.org/10.1016/S0965-9773(98)00102-0.
[24] N. Hirayama et al., "First-principles investigation of structural, electronic, and thermoelectric properties of n- and p-type Mg2Si," Journal of Materials Research, vol. 30, no. 17, pp. 2564-2577, 2015, doi: 10.1557/jmr.2015.206.
[25] H. Kim, J. Choi, H. J. Sohn, and T. Kang, "The Insertion Mechanism of Lithium into Mg2Si Anode Material for Li‐Ion Batteries," Journal of The Electrochemical Society, vol. 146, no. 12, p. 4401, 1999/12/01 1999, doi: 10.1149/1.1392650.
[26] Q. D. Qin, Y. G. Zhao, W. Zhou, and P. J. Cong, "Effect of phosphorus on microstructure and growth manner of primary Mg2Si crystal in Mg2Si/Al composite," Materials Science and Engineering: A, vol. 447, no. 1, pp. 186-191, 2007/02/25/ 2007, doi: https://doi.org/10.1016/j.msea.2006.10.076.
[27] X. Hu, D. Mayson, and M. R. Barnett, "Synthesis of Mg2Si for thermoelectric applications using magnesium alloy and spark plasma sintering," Journal of Alloys and Compounds, vol. 589, pp. 485-490, 2014/03/15/ 2014, doi: https://doi.org/10.1016/j.jallcom.2013.11.092.
[28] J.-i. Tani and H. Kido, "Thermoelectric properties of Al-doped Mg2Si1−xSnx (x≦0.1)," Journal of Alloys and Compounds, vol. 466, no. 1, pp. 335-340, 2008/10/20/ 2008, doi: https://doi.org/10.1016/j.jallcom.2007.11.029.
[29] J. Camut, P. Ziolkowski, P. Ponnusamy, C. Stiewe, E. Mueller, and J. de Boor, "Efficiency Measurement and Modeling of a High-Performance Mg2(Si,Sn)-Based Thermoelectric Generator," Advanced Engineering Materials, vol. 25, no. 1, p. 2200776, 2023/01/01 2023, doi: https://doi.org/10.1002/adem.202200776.
[30] G. K. Goyal and T. Dasgupta, "Fabrication and testing of Mg2Si1-xSnx based thermoelectric generator module," Materials Science and Engineering: B, vol. 272, p. 115338, 2021/10/01/ 2021, doi: https://doi.org/10.1016/j.mseb.2021.115338.
指導教授 辛正倫(Cheng-Lun Hsin) 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明