博碩士論文 111521146 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:89 、訪客IP:18.119.119.252
姓名 郭柏辰(Po-Chen Kuo)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用資料外插方法降低2x-Thru校正法中的高頻異常響應
(Reducing High-Frequency Spurious Responses in 2x-Thru Calibration Using Data Extrapolation Method裘)
相關論文
★ 利用差分色散關係進行因果性評估與強化★ 克服 2x-Thru 去嵌入法中的挑戰:解決印刷電路板校準 中的夾具誤差、參考阻抗及表面粗糙度估計問題
★ 兩端口及四端口2x-thru去嵌入法之實作★ 使用平衡截取與被動降階互連建模法簡化向量擬合所得之模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-31以後開放)
摘要(中) 在現今印刷電路板(PCB)的高速信號完整度測試中,準確的校正方法至關重要,因為隨著頻率的提升,獲取待測物的響應會變得更有挑戰性。其中,2x-thru去嵌入法憑藉著方便、快速且精準的優勢,被廣泛應用於PCB電路元件、連接器與電纜的校正中,然而其演算法目前仍存在若干問題。其中一個常被忽略的問題為:經過校正後的待測物之S參數響應,在接近數據的最高頻率(fmax)處會出現異常大的起伏。在我們的實務經驗中,各校正結果的起伏程度不一,有時並不明顯,有時則會出現明顯的異常響應。在某些情況下,其校正結果的回波損耗值(Return Loss)甚至會超過0 dB,違反S參數的被動性原則。因此,2x-thru校正法在接近數據之最高頻率處的精確度常受到質疑。
針對此問題,本論文首先探討了造成此異常響應的原因,發現問題源自於2x-thru校正中由THRU電路獲得接在待測物兩端的夾具(fixture)過程中的時間門控(time gating)步驟。由於有限的量測頻寬,會造成在做time gating後在fmax附近的結果出現誤差,導致得到的fixture以及透過其fixture校正後的結果也會在fmax附近的響應出現異常起伏。基於此分析結果,一個最直接的解決方法為將THRU電路的最高量測頻率提高,並在進行time gating之後再將其截斷至原先的最高頻率,就可以避免此問題。然而,這需要能夠測量更高頻率的網絡分析儀,因此此方法在硬體上具有一定的限制。
本論文提出了另一個解決方案–數據外插。透過數學運算方法,預先對THRU電路進行符合原始資料響應趨勢的數據外插,也可以達到同樣的效果。本論文探討了兩種外插方法:Autoregressive (AR)外插法與Least Squares Convolution (LSC)外插法。在AR外插法的部分,我們成功了擬合原始數據的響應,並外插出符合原始資料趨勢的數據。並且透過了演算法的改進,我們得以實現自動AR外插方法,能夠對SNP檔自動進行數據外插,省去了挑選變數的繁雜步驟。相比之下,儘管LSC外插法能確保其生成的數據之因果性,但在我們的測試中,其經常無法準確擬合原始數據響應,也無法生成符合原始響應趨勢的外插結果。最後,我們將這兩種解決方案實際應用於2x-thru校正法中,並將結果與未經外插以及使用其他外插方法的結果進行比較。結果顯示預先進行外插的確可以有效解決異常響應的問題,突顯了其在2x-thru校正過程中的重要性。此外,透過了不同外插方法的比較,證實了我們提出的自動AR外插方法的有效性與可行性,展現了其在2x-thru校正法中應用的巨大潛力。
摘要(英) Currently, in the field of high-speed signal integrity testing of printed circuit boards (PCBs) components, accurate calibration methods are crucial, as obtaining the response of the device under test (DUT) becomes increasingly challenging with higher frequencies. Among these methods, 2x-thru de-embedding, with its advantages of convenience, speed, and precision, is widely used for the calibration of PCB circuit components, connectors, and cables. However, its algorithm still has several issues. One commonly overlooked problem is the appearance of spurious fluctuations in the S-parameter responses of the DUT near the highest frequency (fmax) of the data after calibration. In our practical experience, the degree of these fluctuations varies; sometimes they are not significant, while other times, noticeable abnormal responses occur. In some cases, the return loss of the calibration result even exceeds 0 dB, violating the passivity principle of S parameter. This indicates that the accuracy of the 2x-thru calibration near the highest frequency of the data is questionable.
In this thesis, we initially explore the causes of the abnormal responses and find that the problem originates from the time gating step used to obtain the fixtures attached to both ends of the DUT in the THRU circuit. Due to the limited measurement bandwidth, time gating causes errors near fmax, leading to abnormal fluctuations in the fixtures and the calibrated results near fmax. The most direct solution is to increase fmax of the measurement of the THRU circuit by several GHz; However, this requires a vector network analyzer capable of measuring higher frequencies, thus posing certain hardware limitations.
This thesis proposes another solution—data extrapolation. By using mathematical operations to pre-extrapolate the THRU circuit data to match the trend of the original data response, the same effect can be achieved. After calibration, the extrapolated band is truncated back to the original fmax. In this thesis, two extrapolation methods are studied: Autoregressive (AR) extrapolation and Least Squares Convolution (LSC) extrapolation. In AR extrapolation method, we successfully fit the original data response accurately and extrapolate data that follows the trend of the original response. Through algorithm improvements, we also achieve automatic AR extrapolation method that can automatically extrapolate an SNP file data without variable selection. In contrast, although LSC extrapolation method can ensure the causality of the fitted and extrapolated data, our tests show that it often fails to accurately fit the original data response and to produce extrapolated data that aligns with the original response trend. Finally, we apply these two methods to 2x-thru calibration and compare the results with those obtained without extrapolation, as well as with the results using other extrapolation methods. The results show that pre-extrapolation can effectively resolve the issue of abnormal responses, highlighting the importance of performing data extrapolation in the 2x-thru calibration process. Additionally, by comparing different methods, we demonstrate the effectiveness and feasibility of our proposed automatic AR extrapolation method, showing the great potential for application in 2x-thru calibration.
關鍵字(中) ★ 2X-THRU校正法
★ 外插
關鍵字(英)
論文目次 摘要 I
Abstract III
Outline V
List of Figures VII
List of Tables X
Chapter 1 Introduction of 2x-Thru De-Embedding Algorithm 1
1.1 General Introduction 1
1.2 Time Gating Method in 2x-Thru Calibration 3
1.3 The Problem of Time Gating Method 7
1.4 The Potential Solutions for the Issue 11
1.5 Objectives and Organizations of this Thesis 13
Chapter 2 Autoregressive Extrapolation Method 14
2.1 Linear Autoregressive Model 14
2.2 Basic Implementation of Autoregressive Extrapolation Method 18
2.3 Automatic Autoregressive Extrapolation Algorithm 28
2.4 Implementation of the Automatic Autoregressive Extrapolation Method 33
2.5 Divergence Issue in Autoregressive Extrapolation Algorithm 41
Chapter 3 Least Squares Convolution Extrapolation Method 44
3.1 Least Squares Convolution 44
3.2 Basic Implementation of Least Squares Convolution Extrapolation Method 48
3.3 The Issues of Least Squares Convolution Extrapolation Method 58
Chapter 4 Application in 2x-Thru De-embedding Method 69
4.1 1x-Fixtures Comparison 69
4.2 2x-Thru Calibration Results Comparison 80
Chapter 5 Conclusion and Future Work 89
Reference 91
List of Publications 93
參考文獻 [1] G. F. Engen and C. A. Hoer, "Thru-reflect-line: An improved technique for calibrating the dual six-port automatic network analyzer," IEEE Transactions on Microwave Theory and Techniques, vol. 27, no. 12, pp. 987-993, 1979.
[2] V. Adamian and B. Cole, "A novel procedure for characterization of multiport high-speed balanced devices," in 2006 IEEE International Symposium on Electromagnetic Compatibility, 2006. EMC 2006., 14-18 Aug 2006, vol. 2, pp. 395-398.
[3] S. J. Moon, X. Ye, and R. Smith, "Comparison of TRL calibration vs. 2x thru de-embedding methods," in 2015 IEEE Symposium on Electromagnetic Compatibility and Signal Integrity, 15-21 March 2015, pp. 176-180.
[4] Universal Serial Bus Type-C Connectors and Cable Assemblies Compliance Document, June 2021. Accessed: April 27, 2023. [Online]. Available: https://www.usb.org/document-library/usb-type-c-connectors-and-cable-assemblies-compliance-document
[5] Internal Cable Specification for PCI Express 5.0 and 6.0, Dec 2022.
[6] "IEEE Standard for Electrical Characterization of Printed Circuit Board and Related Interconnects at Frequencies up to 50 GHz," IEEE Std 370-2020, pp. 1-147, 8 Jan 2021.
[7] C. C. Chou, "The reference impedance in 2x-thru calibration, and its estimation for high conductor-loss transmission lines," TechRxiv, 2022.
[8] H. Barnes et al., "A NIST traceable PCB kit for evaluating the accuracy of de-embedding algorithms and corresponding metrics," DesignCon 2018, Santa Clara, CA, 2018.
[9] Y. Wang, Z. Chen, A. Shyne, and D. Lewis, "A versatile Fourier domain filtering library for diverse applications," in 2023 IEEE Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMC+SIPI), 29 July-4 Aug. 2023, pp. 189-190.
[10] S. S. Chen, Z. Xu, A. Tajali, and B. Holden, "A comparison of the S-parameter extrapolation methods," in 2022 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), 1-4 Sept. 2022, pp. 97-100.
[11] C. C. Chou, P. C. Kuo, S. T. Lin, and W. C. Wang, "S-parameter extrapolation for improving near-fmax accuracy in 2x-thru calibration," IEEE Transactions on Electromagnetic Compatibility, pp. 1-11, early access, 2024.
[12] Z. Chen and Z. Xiong, "Mitigation of band edge effects in Fourier transform based time domain gating," in 2019 13th European Conference on Antennas and Propagation (EuCAP), 31 March-5 April 2019, pp. 1-5.
[13] Z. Chen and Z. Xiong, "Spectrum extension edgeless gating for reduced time domain edge errors," US Patent US-20190170797-A1, 2019.
[14] Z. Chen and D. Lewis, "Delving into time domain gating: An extensive study on parameter selection and its implications," in 2024 18th European Conference on Antennas and Propagation (EuCAP), 17-22 March 2024, pp. 1-5.
[15] C. Collomb, "Burg’s method, algorithm and recursion," ed. http://ccollomb.free.fr, November, 2009.
[16] B. Gustavsen and A. Semlyen, "Rational approximation of frequency domain responses by vector fitting," IEEE Transactions on Power Delivery, vol. 14, no. 3, pp. 1052-1061, 1999.
[17] R. S. Adve, T. K. Sarkar, S. M. Rao, E. K. Miller, and D. R. Pflug, "Application of the Cauchy method for extrapolating/interpolating narrowband system responses," IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 5, pp. 837-845, 1997.
[18] J. H. Hsu, "Overcoming challenges in 2x-thru de-embedding: Addressing fixture mismatch, reference impedance, and surface roughness estimation in PCB calibration," Master, Electrical Engineering, National Central University, Taoyuan City, 2023. [Online]. Available: https://hdl.handle.net/11296/swrn5v
[19] S. N. Lalgudi, E. Engin, G. Casinovi, and M. Swaminathan, "Accurate transient simulation of interconnects characterized by band-limited data with propagation delay enforcement in a modified nodal analysis framework," IEEE Transactions on Electromagnetic Compatibility, vol. 50, no. 3, pp. 715-729, 2008.
[20] M. Tsuk and S. Lalgudi, "Least squares convolution: A method to improve the fidelity of convolution in transient circuit simulation," in 2009 IEEE 18th Conference on Electrical Performance of Electronic Packaging and Systems, 19-21 Oct. 2009, pp. 73-76.
[21] J. R. Winkler, "Condition numbers and least squares regression," in Mathematics of Surfaces XII, Berlin, Heidelberg, R. Martin, M. Sabin, and J. Winkler, Eds., 2007: Springer Berlin Heidelberg, pp. 480-493.
指導教授 周求致 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明