參考文獻 |
[1] F. Blaabjerg, Z. Chen and S. B. Kjaer, “Power electronics as efficient interface in dispersed power generation systems,” IEEE Transactions on Power Electronics, vol. 19, no. 5, pp. 1184–1194, Sep. 2004.
[2] S. B. Kjaer, J. K. Pedersen and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Transactions on Industry Applications, vol. 41, no. 5, pp. 1292–1306, Sep.-Oct. 2005.
[3] K. Mertens, Photovoltaics: Fundamentals, Technology, and Practice, 2nd ed. New York, NY, USA: Wiley, 2018.
[4] A. T. Ghareeb, A. A. Mohamed and O. A. Mohammed, “DC microgrids and distribution systems: An overview,” 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, pp. 1-5, 2013.
[5] S. Hasanpour, T. Nouri, F. Blaabjerg and Y. P. Siwakoti, “High Step-Up SEPIC-Based Trans-Inverse DC–DC Converter With Quasi-Resonance Operation for Renewable Energy Applications,” IEEE Transactions on Industrial Electronics, vol. 70, no. 1, pp. 485-497, Jan. 2023.
[6] K. Zaoskoufis and E. C. Tatakis, “Isolated ZVS-ZCS DC–DC High Step-Up Converter With Low-Ripple Input Current,” IEEE Journal of Emerging and Selected Topics in Industrial Electronics, vol. 2, no. 4, pp. 464-480, Oct. 2021.
[7] R. Rahimi, S. Habibi, M. Ferdowsi and P. Shamsi, “A Three-Winding Coupled Inductor-Based Interleaved High-Voltage Gain DC–DC Converter for Photovoltaic Systems,” IEEE Transactions on Power Electronics, vol. 37, no. 1, pp. 990-1002, Jan. 2022.
[8] M. Forouzesh, Y. Shen, K. Yari, Y. P. Siwakoti and F. Blaabjerg, “High-Efficiency High Step-Up DC–DC Converter With Dual Coupled Inductors for Grid-Connected Photovoltaic Systems,” IEEE Transactions on Power Electronics, vol. 33, no. 7, pp. 5967-5982, July 2018.
[9] A. Elkhateb, N. A. Rahim, J. Selvaraj and B. W. Williams, “DC-to-DC Converter With Low Input Current Ripple for Maximum Photovoltaic Power Extraction,” IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp. 2246-2256, April 2015.
[10] B. W. Williams, “DC-to-DC Converters With Continuous Input and Output Power,” IEEE Transactions on Power Electronics, vol. 28, no. 5, pp. 2307-2316, May 2013.
[11] O. Abutbul, A. Gherlitz, Y. Berkovich and A. Ioinovici, “Step-up switching-mode converter with high voltage gain using a switched-capacitor circuit,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 50, no. 8, pp. 1098-1102, Aug. 2003.
[12] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg and B. Lehman, “Step-Up DC–DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications,” IEEE Transactions on Power Electronics, vol. 32, no. 12, pp. 9143-9178, Dec. 2017.
[13] Y. -P. Hsieh, J. -F. Chen, T. -J. Liang and L. -S. Yang, “A Novel High Step-Up DC–DC Converter for a Microgrid System,” IEEE Transactions on Power Electronics, vol. 26, no. 4, pp. 1127-1136, April 2011.
[14] B. Axelrod, Y. Berkovich and A. Ioinovici, “Switched-Capacitor/Switched-Inductor Structures for Getting Transformerless Hybrid DC–DC PWM Converters,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 2, pp. 687-696, March 2008.
[15] H. Liu and F. Li, “A Novel High Step-up Converter With a Quasi-active Switched-Inductor Structure for Renewable Energy Systems,” IEEE Transactions on Power Electronics, vol. 31, no. 7, pp. 5030-5039, July 2016.
[16] P. Wang, L. Zhou, Y. Zhang, J. Li and M. Sumner, “Input-Parallel Output-Series DC-DC Boost Converter With a Wide Input Voltage Range, For Fuel Cell Vehicles,” IEEE Transactions on Vehicular Technology, vol. 66, no. 9, pp. 7771-7781, Sep. 2017.
[17] A. M. S. S. Andrade, E. Mattos, L. Schuch, H. L. Hey and M. L. da Silva Martins, “Synthesis and Comparative Analysis of Very High Step-Up DC–DC Converters Adopting Coupled-Inductor and Voltage Multiplier Cells,” IEEE Transactions on Power Electronics, vol. 33, no. 7, pp. 5880-5897, July 2018.
[18] Fang Lin Luo, “Six self-lift DC-DC converters, voltage lift technique,” IEEE Transactions on Industrial Electronics, vol. 48, no. 6, pp. 1268-1272, Dec. 2001.
[19] F. Mohammadzadeh Shahir, E. Babaei and M. Farsadi, “Voltage-Lift Technique Based Nonisolated Boost DC–DC Converter: Analysis and Design,” IEEE Transactions on Power Electronics, vol. 33, no. 7, pp. 5917-5926, July 2018.
[20] T. -J. Liang, J. -H. Lee, S. -M. Chen, J. -F. Chen and L. -S. Yang, “Novel Isolated High-Step-Up DC–DC Converter With Voltage Lift,” IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1483-1491, April 2013.
[21] H. Liu, H. Hu, H. Wu, Y. Xing and I. Batarseh, “Overview of High-Step-Up Coupled-Inductor Boost Converters,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 2, pp. 689-704, June 2016.
[22] S. -M. Chen, T. -J. Liang, L. -S. Yang and J. -F. Chen, “A Boost Converter With Capacitor Multiplier and Coupled Inductor for AC Module Applications,” IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1503-1511, April 2013.
[23] Qun Zhao and F. C. Lee, “High-efficiency, high step-up DC-DC converters,” IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 65-73, Jan. 2003.
[24] S. Dwari and L. Parsa, “An Efficient High-Step-Up Interleaved DC–DC Converter With a Common Active Clamp,” IEEE Transactions on Power Electronics, vol. 26, no. 1, pp. 66-78, Jan. 2011.
[25] T. -F. Wu, Y. -S. Lai, J. -C. Hung and Y. -M. Chen, “Boost Converter With Coupled Inductors and Buck–Boost Type of Active Clamp,” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 154-162, Jan. 2008.
[26] G. Wu, X. Ruan and Z. Ye, “High Step-Up DC–DC Converter Based on Switched Capacitor and Coupled Inductor,” IEEE Transactions on Industrial Electronics, vol. 65, no. 7, pp. 5572-5579, July 2018.
[27] T. -J. Liang, S. -M. Chen, L. -S. Yang, J. -F. Chen and A. Ioinovici, “Ultra-Large Gain Step-Up Switched-Capacitor DC-DC Converter With Coupled Inductor for Alternative Sources of Energy,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 4, pp. 864-874, April 2012.
[28] J. Leyva-Ramos, R. Mota-Varona, M. G. Ortiz-Lopez, L. H. Diaz-Saldierna and D. Langarica-Cordoba, “Control Strategy of a Quadratic Boost Converter With Voltage Multiplier Cell for High-Voltage Gain,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 4, pp. 1761-1770, Dec. 2017.
[29] L. H. S. C. Barreto, E. A. A. Coelho, V. J. Farias, J. C. de Oliveira, L. C. de Freitas and J. Joao Batista Vieira, “A quasi-resonant quadratic boost converter using a single resonant network,” IEEE Transactions on Industrial Electronics, vol. 52, no. 2, pp. 552-557, April 2005.
[30] B. T. Rao and D. De, “A Coupled Inductor-Based High-Gain ZVS DC–DC Converter With Reduced Voltage Stresses,” IEEE Transactions on Power Electronics, vol. 38, no. 12, pp. 15956-15967, Dec. 2023.
[31] P. Saadat and K. Abbaszadeh, “A Single-Switch High Step-Up DC–DC Converter Based on Quadratic Boost,” IEEE Transactions on Industrial Electronics, vol. 63, no. 12, pp. 7733-7742, Dec. 2016.
[32] R. Hu, J. Zeng, J. Liu, Z. Guo and N. Yang, “An Ultrahigh Step-Up Quadratic Boost Converter Based on Coupled-Inductor,” IEEE Transactions on Power Electronics, vol. 35, no. 12, pp. 13200-13209, Dec. 2020.
[33] X. Hu and C. Gong, “A High Voltage Gain DC–DC Converter Integrating Coupled-Inductor and Diode–Capacitor Techniques,” IEEE Transactions on Power Electronics, vol. 29, no. 2, pp. 789-800, Feb. 2014.
[34] D. Alizadeh, E. Babaei and M. Sabahi, “High Step-Up Quadratic Impedance Source DC-DC Converter Based on Coupled Inductor,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 11, no. 6, pp. 5930-5939, Dec. 2023.
[35] S. -W. Lee and H. -L. Do, “Quadratic Boost DC–DC Converter With High Voltage Gain and Reduced Voltage Stresses,” IEEE Transactions on Power Electronics, vol. 34, no. 3, pp. 2397-2404, March 2019.
[36] S. Hasanpour, Y. P. Siwakoti, A. Mostaan and F. Blaabjerg, “New Semiquadratic High Step-Up DC/DC Converter for Renewable Energy Applications,” IEEE Transactions on Power Electronics, vol. 36, no. 1, pp. 433-446, Jan. 2021.
[37] M. Rezaie and V. Abbasi, “Ultrahigh Step-Up DC–DC Converter Composed of Two Stages Boost Converter, Coupled Inductor, and Multiplier Cell,” IEEE Transactions on Industrial Electronics, vol. 69, no. 6, pp. 5867-5878, June 2022.
[38] T. Jalilzadeh, N. Rostami, E. Babaei and M. Maalandish, “Nonisolated Topology for High Step-Up DC–DC Converters,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 11, no. 1, pp. 1154-1168, Feb. 2023.
[39] P. Mohseni, S. H. Hosseini and M. Maalandish, “A New Soft Switching DC–DC Converter With High Voltage Gain Capability,” IEEE Transactions on Industrial Electronics, vol. 67, no. 9, pp. 7386-7398, Sept. 2020.
[40] P. Upadhyay, R. Kumar, and S. Sathyan, “Coupled-inductor-based highgain converter utilizing magnetising inductance to achieve soft-switching with low voltage stress on devices,” IET Power Electron, vol. 13, no. 3, pp. 576–591, Dec. 2020.
[41] Y. Wang, Y. Qiu, Q. Bian, Y. Guan and D. Xu, “A Single Switch Quadratic Boost High Step Up DC–DC Converter,” IEEE Transactions on Industrial Electronics, vol. 66, no. 6, pp. 4387-4397, June 2019.
[42] J. C. Rosas-Caro, J. M. Ramirez, F. Z. Peng, and A. Valderrabano, “A DC–DC multilevel boost converter,” IET Power Electron, vol. 3, no. 1, pp. 129–137, Jan. 2010.
[43] Y. Ye, K. W. E. Cheng and S. Chen, “A High Step-up PWM DC-DC Converter With Coupled-Inductor and Resonant Switched-Capacitor,” IEEE Transactions on Power Electronics, vol. 32, no. 10, pp. 7739-7749, Oct. 2017.
[44] P. H. Costa da Silva Bernardo Loureiro, T. M. Klein Faistel, A. Toebe and A. M. S. Spencer Andrade, “Generation and Comparative Analysis of High-Voltage Gain Nonisolated DC–DC Converters With Ladder Switched Capacitor and Coupled Inductor,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 6, pp. 6742-6753, Dec. 2022.
[45] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, Third Edition, Springer, pp. 409-482, 2020.
[46] Chang Sung Corporation Inc., Soft Magnetic Powder Cores, 2018. |