博碩士論文 111521104 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:176 、訪客IP:3.131.37.193
姓名 林宜靜(Yi-Jing Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於耦合電感‐切換電容單元具零電流切換之新型二次高升壓轉換器
(A Novel Quadratic High Step–Up DC–DC Converter with ZCS Based on Coupled Inductor–Switched Capacitor Cells)
相關論文
★ 感光式觸控面板設計★ 單級式直流無刷馬達系統之研製
★ 單級高功因LLC諧振電源轉換器之研製★ 多頻相位編碼於穩態視覺誘發電位之大腦人機介面系統設計
★ 類神經網路於切換式磁阻馬達轉矩漣波控制之應用★ 感應馬達無速度感測之直接轉矩向量控制
★ 具自我調適導通角度功能之切換式磁阻馬達驅動系統---DSP實現★ 感應馬達之低轉速直接轉矩控制策略
★ 加強型數位濾波器設計於主動式噪音控制之應用★ 非匹配不確定可變結構系統之分析與設計
★ 無刷直流馬達直接轉矩控制方法之轉矩漣波改善★ 無轉軸偵測元件之無刷直流馬達驅動器研製
★ 無轉軸偵測元件之開關磁阻馬達驅動系統研製★ 感應馬達之新型直接轉矩控制研究
★ 同步磁阻馬達之性能分析及運動控制研究★ 改良比例積分與模糊控制器於線性壓電陶瓷馬達位置控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-23以後開放)
摘要(中) 本論文針對所提出的轉換器進行詳細分析,根據其中各項元件和參數推導出相關公式,進行電路模擬與損耗分析,以此確認了所提出設計的有效性。隨後,與其他高升壓轉換器進行了對比,驗證了所提出之新型轉換器的性能優勢。最後,成功實現了一個功率為200W的實驗樣本,驗證了理論設計的可行性。而實驗結果表明,該轉換器效率達到了93.25%,這證實了設計之新型轉換器的可行性及其在實際應用上的優越性。
本論文提出了一種適用於燃料電池和太陽能發電等低壓電源應用的高升壓直流‐直流轉換器,該轉換器採用了二次升壓轉換器為基礎架構,能夠在較低的工作週期下達到高輸出電壓。同時,引入了耦合電感和切換電容單元,進一步提高電壓轉換比。所提出的轉換器產生高電壓增益、開關上的低電壓應力、連續輸入電流以及電源和負載之間存在公共接地。此外,耦合電感自身的漏電感提供部分二極體零電流切換的特性,有助於緩解二極體的反向恢復問題與導通損耗。
摘要(英) This thesis proposes a high step-up DC-DC converter suitable for low-voltage power sources such as fuel cells and solar power generation. The converter is based on quadratic boost converter(QBC), which achieves high output voltage at lower duty cycles. Additionally, it introduces coupled inductor and switched capacitor units to further enhance the voltage conversion ratio. The proposed converter features high voltage gain, low voltage stress on switches, continuous input current, and a common ground between the power source and load. Furthermore, the leakage inductance of the coupled inductor provides zero-current switching(ZCS) conditions for the partial diodes, aiding in alleviating diode reverse recovery issues and conduction losses.
A detailed analysis of the proposed converter is conducted in this thesis, deriving relevant formulas based on its components and parameters. To confirm the effectiveness of the design performs circuit simulations and loss analyses. Comparisons with other converters validate its performance advantages. Finally, a 200W experimental prototype demonstrates the feasibility of the design, with an efficiency of 93.25%, affirming its superiority in practical applications.
關鍵字(中) ★ 非隔離式轉換器
★ 直流‐直流轉換器
★ 二次升壓轉換器
★ 高電壓增益
★ 耦合電感
★ 切換電容
關鍵字(英) ★ Non-Isolated Converter
★ DC-DC Converter
★ High Voltage Gain
★ Quadratic Boost Converter
★ Coupled Inductor
★ Switched Capacitor
論文目次 摘 要 i
Abstract ii
目 錄 iii
圖目錄 vi
表目錄 x
第一章 緒論 1
1-1 研究背景 1
1-2 文獻探討 2
1-3 研究動機與目的 3
1-4 論文架構 5
第二章 二次升壓與切換電容介紹 6
2-1 二次升壓轉換器介紹 6
2-2 切換電容介紹 7
第三章 轉換器電路設計 10
3-1 電路主架構分析 10
3-2 電路切換時序說明 11
3-3 理想電壓轉換比推導 17
3-4 元件應力分析 20
3-4-1 元件電壓應力 20
3-4-2 元件電流應力 22
3-5 元件設計考量 28
3-5-1 電感漣波計算 28
3-5-2 電容漣波計算 30
3-6 回授電路控制 34
第四章 電路模擬分析 35
4-1 電路模擬與參數規格設定 35
4-2 轉換器波形模擬結果 36
4-2-1 一階耦合電感‐切換電容單元之二次升壓轉換器 37
4-2-2 二階耦合電感‐切換電容單元之二次升壓轉換器 42
4-3 非理想元件分析 44
4-3-1 元件損耗分析 45
4-3-2 效率評估 47
4-4 架構比較 56
第五章 電路實作與實驗結果 60
5-1 轉換器電路實作 60
5-1-1 STM32F103微控制器電路 61
5-1-2 轉換器電路設計 62
5-1-3 回授系統電路設計 63
5-2 轉換器實驗結果 65
5-2-1 轉換器量測波形 65
5-2-2 轉換器效率 69
5-2-3 回授控制結果 70
第六章 結論 73
第七章 參考文獻 75
參考文獻 [1] F. Blaabjerg, Z. Chen and S. B. Kjaer, “Power electronics as efficient interface in dispersed power generation systems,” IEEE Transactions on Power Electronics, vol. 19, no. 5, pp. 1184–1194, Sep. 2004.
[2] S. B. Kjaer, J. K. Pedersen and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Transactions on Industry Applications, vol. 41, no. 5, pp. 1292–1306, Sep.-Oct. 2005.
[3] K. Mertens, Photovoltaics: Fundamentals, Technology, and Practice, 2nd ed. New York, NY, USA: Wiley, 2018.
[4] A. T. Ghareeb, A. A. Mohamed and O. A. Mohammed, “DC microgrids and distribution systems: An overview,” 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, pp. 1-5, 2013.
[5] S. Hasanpour, T. Nouri, F. Blaabjerg and Y. P. Siwakoti, “High Step-Up SEPIC-Based Trans-Inverse DC–DC Converter With Quasi-Resonance Operation for Renewable Energy Applications,” IEEE Transactions on Industrial Electronics, vol. 70, no. 1, pp. 485-497, Jan. 2023.
[6] K. Zaoskoufis and E. C. Tatakis, “Isolated ZVS-ZCS DC–DC High Step-Up Converter With Low-Ripple Input Current,” IEEE Journal of Emerging and Selected Topics in Industrial Electronics, vol. 2, no. 4, pp. 464-480, Oct. 2021.
[7] R. Rahimi, S. Habibi, M. Ferdowsi and P. Shamsi, “A Three-Winding Coupled Inductor-Based Interleaved High-Voltage Gain DC–DC Converter for Photovoltaic Systems,” IEEE Transactions on Power Electronics, vol. 37, no. 1, pp. 990-1002, Jan. 2022.
[8] M. Forouzesh, Y. Shen, K. Yari, Y. P. Siwakoti and F. Blaabjerg, “High-Efficiency High Step-Up DC–DC Converter With Dual Coupled Inductors for Grid-Connected Photovoltaic Systems,” IEEE Transactions on Power Electronics, vol. 33, no. 7, pp. 5967-5982, July 2018.
[9] A. Elkhateb, N. A. Rahim, J. Selvaraj and B. W. Williams, “DC-to-DC Converter With Low Input Current Ripple for Maximum Photovoltaic Power Extraction,” IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp. 2246-2256, April 2015.
[10] B. W. Williams, “DC-to-DC Converters With Continuous Input and Output Power,” IEEE Transactions on Power Electronics, vol. 28, no. 5, pp. 2307-2316, May 2013.
[11] O. Abutbul, A. Gherlitz, Y. Berkovich and A. Ioinovici, “Step-up switching-mode converter with high voltage gain using a switched-capacitor circuit,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 50, no. 8, pp. 1098-1102, Aug. 2003.
[12] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg and B. Lehman, “Step-Up DC–DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications,” IEEE Transactions on Power Electronics, vol. 32, no. 12, pp. 9143-9178, Dec. 2017.
[13] Y. -P. Hsieh, J. -F. Chen, T. -J. Liang and L. -S. Yang, “A Novel High Step-Up DC–DC Converter for a Microgrid System,” IEEE Transactions on Power Electronics, vol. 26, no. 4, pp. 1127-1136, April 2011.
[14] B. Axelrod, Y. Berkovich and A. Ioinovici, “Switched-Capacitor/Switched-Inductor Structures for Getting Transformerless Hybrid DC–DC PWM Converters,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 2, pp. 687-696, March 2008.
[15] H. Liu and F. Li, “A Novel High Step-up Converter With a Quasi-active Switched-Inductor Structure for Renewable Energy Systems,” IEEE Transactions on Power Electronics, vol. 31, no. 7, pp. 5030-5039, July 2016.
[16] P. Wang, L. Zhou, Y. Zhang, J. Li and M. Sumner, “Input-Parallel Output-Series DC-DC Boost Converter With a Wide Input Voltage Range, For Fuel Cell Vehicles,” IEEE Transactions on Vehicular Technology, vol. 66, no. 9, pp. 7771-7781, Sep. 2017.
[17] A. M. S. S. Andrade, E. Mattos, L. Schuch, H. L. Hey and M. L. da Silva Martins, “Synthesis and Comparative Analysis of Very High Step-Up DC–DC Converters Adopting Coupled-Inductor and Voltage Multiplier Cells,” IEEE Transactions on Power Electronics, vol. 33, no. 7, pp. 5880-5897, July 2018.
[18] Fang Lin Luo, “Six self-lift DC-DC converters, voltage lift technique,” IEEE Transactions on Industrial Electronics, vol. 48, no. 6, pp. 1268-1272, Dec. 2001.
[19] F. Mohammadzadeh Shahir, E. Babaei and M. Farsadi, “Voltage-Lift Technique Based Nonisolated Boost DC–DC Converter: Analysis and Design,” IEEE Transactions on Power Electronics, vol. 33, no. 7, pp. 5917-5926, July 2018.
[20] T. -J. Liang, J. -H. Lee, S. -M. Chen, J. -F. Chen and L. -S. Yang, “Novel Isolated High-Step-Up DC–DC Converter With Voltage Lift,” IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1483-1491, April 2013.
[21] H. Liu, H. Hu, H. Wu, Y. Xing and I. Batarseh, “Overview of High-Step-Up Coupled-Inductor Boost Converters,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 2, pp. 689-704, June 2016.
[22] S. -M. Chen, T. -J. Liang, L. -S. Yang and J. -F. Chen, “A Boost Converter With Capacitor Multiplier and Coupled Inductor for AC Module Applications,” IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1503-1511, April 2013.
[23] Qun Zhao and F. C. Lee, “High-efficiency, high step-up DC-DC converters,” IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 65-73, Jan. 2003.
[24] S. Dwari and L. Parsa, “An Efficient High-Step-Up Interleaved DC–DC Converter With a Common Active Clamp,” IEEE Transactions on Power Electronics, vol. 26, no. 1, pp. 66-78, Jan. 2011.
[25] T. -F. Wu, Y. -S. Lai, J. -C. Hung and Y. -M. Chen, “Boost Converter With Coupled Inductors and Buck–Boost Type of Active Clamp,” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 154-162, Jan. 2008.
[26] G. Wu, X. Ruan and Z. Ye, “High Step-Up DC–DC Converter Based on Switched Capacitor and Coupled Inductor,” IEEE Transactions on Industrial Electronics, vol. 65, no. 7, pp. 5572-5579, July 2018.
[27] T. -J. Liang, S. -M. Chen, L. -S. Yang, J. -F. Chen and A. Ioinovici, “Ultra-Large Gain Step-Up Switched-Capacitor DC-DC Converter With Coupled Inductor for Alternative Sources of Energy,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 4, pp. 864-874, April 2012.
[28] J. Leyva-Ramos, R. Mota-Varona, M. G. Ortiz-Lopez, L. H. Diaz-Saldierna and D. Langarica-Cordoba, “Control Strategy of a Quadratic Boost Converter With Voltage Multiplier Cell for High-Voltage Gain,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 4, pp. 1761-1770, Dec. 2017.
[29] L. H. S. C. Barreto, E. A. A. Coelho, V. J. Farias, J. C. de Oliveira, L. C. de Freitas and J. Joao Batista Vieira, “A quasi-resonant quadratic boost converter using a single resonant network,” IEEE Transactions on Industrial Electronics, vol. 52, no. 2, pp. 552-557, April 2005.
[30] B. T. Rao and D. De, “A Coupled Inductor-Based High-Gain ZVS DC–DC Converter With Reduced Voltage Stresses,” IEEE Transactions on Power Electronics, vol. 38, no. 12, pp. 15956-15967, Dec. 2023.
[31] P. Saadat and K. Abbaszadeh, “A Single-Switch High Step-Up DC–DC Converter Based on Quadratic Boost,” IEEE Transactions on Industrial Electronics, vol. 63, no. 12, pp. 7733-7742, Dec. 2016.
[32] R. Hu, J. Zeng, J. Liu, Z. Guo and N. Yang, “An Ultrahigh Step-Up Quadratic Boost Converter Based on Coupled-Inductor,” IEEE Transactions on Power Electronics, vol. 35, no. 12, pp. 13200-13209, Dec. 2020.
[33] X. Hu and C. Gong, “A High Voltage Gain DC–DC Converter Integrating Coupled-Inductor and Diode–Capacitor Techniques,” IEEE Transactions on Power Electronics, vol. 29, no. 2, pp. 789-800, Feb. 2014.
[34] D. Alizadeh, E. Babaei and M. Sabahi, “High Step-Up Quadratic Impedance Source DC-DC Converter Based on Coupled Inductor,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 11, no. 6, pp. 5930-5939, Dec. 2023.
[35] S. -W. Lee and H. -L. Do, “Quadratic Boost DC–DC Converter With High Voltage Gain and Reduced Voltage Stresses,” IEEE Transactions on Power Electronics, vol. 34, no. 3, pp. 2397-2404, March 2019.
[36] S. Hasanpour, Y. P. Siwakoti, A. Mostaan and F. Blaabjerg, “New Semiquadratic High Step-Up DC/DC Converter for Renewable Energy Applications,” IEEE Transactions on Power Electronics, vol. 36, no. 1, pp. 433-446, Jan. 2021.
[37] M. Rezaie and V. Abbasi, “Ultrahigh Step-Up DC–DC Converter Composed of Two Stages Boost Converter, Coupled Inductor, and Multiplier Cell,” IEEE Transactions on Industrial Electronics, vol. 69, no. 6, pp. 5867-5878, June 2022.
[38] T. Jalilzadeh, N. Rostami, E. Babaei and M. Maalandish, “Nonisolated Topology for High Step-Up DC–DC Converters,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 11, no. 1, pp. 1154-1168, Feb. 2023.
[39] P. Mohseni, S. H. Hosseini and M. Maalandish, “A New Soft Switching DC–DC Converter With High Voltage Gain Capability,” IEEE Transactions on Industrial Electronics, vol. 67, no. 9, pp. 7386-7398, Sept. 2020.
[40] P. Upadhyay, R. Kumar, and S. Sathyan, “Coupled-inductor-based highgain converter utilizing magnetising inductance to achieve soft-switching with low voltage stress on devices,” IET Power Electron, vol. 13, no. 3, pp. 576–591, Dec. 2020.
[41] Y. Wang, Y. Qiu, Q. Bian, Y. Guan and D. Xu, “A Single Switch Quadratic Boost High Step Up DC–DC Converter,” IEEE Transactions on Industrial Electronics, vol. 66, no. 6, pp. 4387-4397, June 2019.
[42] J. C. Rosas-Caro, J. M. Ramirez, F. Z. Peng, and A. Valderrabano, “A DC–DC multilevel boost converter,” IET Power Electron, vol. 3, no. 1, pp. 129–137, Jan. 2010.
[43] Y. Ye, K. W. E. Cheng and S. Chen, “A High Step-up PWM DC-DC Converter With Coupled-Inductor and Resonant Switched-Capacitor,” IEEE Transactions on Power Electronics, vol. 32, no. 10, pp. 7739-7749, Oct. 2017.
[44] P. H. Costa da Silva Bernardo Loureiro, T. M. Klein Faistel, A. Toebe and A. M. S. Spencer Andrade, “Generation and Comparative Analysis of High-Voltage Gain Nonisolated DC–DC Converters With Ladder Switched Capacitor and Coupled Inductor,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 6, pp. 6742-6753, Dec. 2022.
[45] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, Third Edition, Springer, pp. 409-482, 2020.
[46] Chang Sung Corporation Inc., Soft Magnetic Powder Cores, 2018.
指導教授 徐國鎧(Kuo-Kai Shyu) 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明