參考文獻 |
[1] J. Pálenik, T. Spengler, and H. Hauser, “Isotrotter: Visually guided empirical modelling of atmospheric convection,” IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. 2, pp. 775–784, 2020.
[2] K. Kashinath, M. S. Pritchard, A. Anandkumar, J. Pathak, M. Mardani, T. Kurth, D. Hall, P. Messmer, S. Posey, S. Subramanian, et al., “Towards digital twins for nvidia’s earth-2 initiative: Pushing the limits of deep auto-regressive fourier neural operator and transformer models for earth system emulation,” in AGU Fall Meeting Abstracts, vol. 2022, pp. GC16C–05, 2022.
[3] J. Vatanen, “Exploring nvidia omniverse ecosystem,” 2024.
[4] S. Salcedo-Sanz, P. Ghamisi, M. Piles, M. Werner, L. Cuadra, A. Moreno-Martínez, E. Izquierdo-Verdiguier, J. Muñoz-Marí,
A. Mosavi, and G. Camps-Valls, “Machine learning information fusion in earth observation: A comprehensive review of methods, applications and data sources,” Information Fusion, vol. 63, pp. 256–272, 2020.
[5] L. Di Girolamo, D. Cox, R. Patterson, S. Levy, K. Borkiewicz, A. Chris- tensen, J. Carpenter, Y. Hong, R. Miller, D. Fu, et al., “Data fusion visualization for nasa camp2ex field campaign,” 2021.
[6] B. Gokaraju, R. A. Nóbrega, D. A. Doss, A. C. Turlapaty, and R. C. Tesiero, “Data fusion of multi-source satellite data sets for cost-effective disaster management studies,” in SoutheastCon 2017, pp. 1–5, IEEE,
2017.
[7] T. Lei, J. Wang, X. Li, W. Wang, C. Shao, and B. Liu, “Flood disaster monitoring and emergency assessment based on multi-source remote sensing observations,” Water, vol. 14, no. 14, p. 2207, 2022.
[8] D. Ververidis, S. Nikolopoulos, and I. Kompatsiaris, “A review of collaborative virtual reality systems for the architecture, engineering, and construction industry,” Architecture, vol. 2, no. 3, pp. 476–496, 2022.
[9] Y. Zhao, Y. Zeng, Q. Long, Y. N. Wu, and S.-C. Zhu, “Sim2plan: Robot motion planning via message passing between simulation and reality,” in Proceedings of the Future Technologies Conference, pp. 29–42, Springer,
2023.
[10] Y. Rao, R. Redmon, K. Dale, S. E. Haupt, A. Hopkinson, A. Bostrom, S. Boukabara, T. Geenen, D. M. Hall, B. D. Smith, et al., “Developing digital twins for earth systems: purpose, requisites, and benefits,” arXiv preprint arXiv:2306.11175, 2023.
[11] G. Page, B. Yorke-Biggs, and S. De-Guido, “Ide digital twin white paper: harnessing the digital twin for real competitive advantage,”
[12] F. Bahrpeyma, A. Sunilkumar, and D. Reichelt, “Application of reinforcement learning to ur10 positioning for prioritized multi-step inspection in nvidia omniverse,” in 2023 IEEE Symposium on Industrial Electronics & Applications (ISIEA), pp. 1–6, IEEE, 2023.
[13] B. Xu, F. Gao, C. Yu, R. Zhang, Y. Wu, and Y. Wang, “Omnidrones: An efficient and flexible platform for reinforcement learning in drone control,” IEEE Robotics and Automation Letters, 2024.
[14] S. Mann, Y. Yuan, F. Lamberti, A. El Saddik, R. Thawonmas, and F. G. Prattico, “extended meta-uni-omni-verse (xv): Introduction, taxonomy, and state-of-the-art,” IEEE Consumer Electronics Magazine, vol. 13,
no. 3, pp. 27–35, 2023.
[15] M. Kern, T. Hewson, F. Sadlo, R. Westermann, and M. Rautenhaus, “Robust detection and visualization of jet-stream core lines in at- mospheric flow,” IEEE transactions on visualization and computer graphics, vol. 24, no. 1, pp. 893–902, 2017.
[16] M. Kern, T. Hewson, A. Schätler, R. Westermann, and M. Rautenhaus, “Interactive 3d visual analysis of atmospheric fronts,” IEEE transactions on visualization and computer graphics, vol. 25, no. 1, pp. 1080–1090,
2018.
[17] Z. Liu, T. Foresman, J. van Genderen, and L. Wang, “Understanding digital earth,” Manual of digital earth, pp. 1–21, 2020.
[18] M. Ehlers, P. Woodgate, A. Annoni, and S. Schade, “Advancing digital earth: beyond the next generation,” International Journal of Digital Earth, vol. 7, no. 1, pp. 3–16, 2014.
[19] T. Wright, M. Burton, D. Pyle, and T. Caltabiano, “Visualising volcanic gas plumes with virtual globes,” Computers & Geosciences, vol. 35, no. 9, pp. 1837–1842, 2009.
[20] J. E. Bailey and A. Chen, “The role of virtual globes in geoscience,” tech. rep., Elsevier Science Publishers, 2011.
[21] H. Doleisch, P. Muigg, and H. Hauser, “Interactive visual analysis of hurricane isabel with simvis,” IEEE Visualization Contest, 2004.
[22] K. I. Dale, E. C. Pope, A. R. Hopkinson, T. McCaie, and J. A. Lowe, “Environment-aware digital twins: Incorporating weather and climate information to support risk-based decision-making,” Artificial Intelligence for the Earth Systems, vol. 2, no. 4, p. e230023, 2023.
[23] M. Hummel and K. van Kooten, “Leveraging nvidia omniverse for in situ visualization,” in High Performance Computing: ISC High Performance 2019 International Workshops, Frankfurt, Germany, June 16-20, 2019, Revised Selected Papers 34, pp. 634–642, Springer, 2019.
[24] M. Datcu, D. Faur, E. Mamut, I. Nedelcu, C. Ionescu, and L. Miron, “Digital twin earth for climate change adapation: An ai based federated system,” in IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium, pp. 1392–1395, IEEE, 2023.
[25] S. Dehnavi, Y. Maghsoudi, K. Zakšek, M. J. Valadan Zoej, G. Seckmeyer, and V. Skripachev, “Cloud detection based on high resolution stereo pairs of the geostationary meteosat images,” Remote Sensing, vol. 12, no. 3, p. 371, 2020.
[26] A. Okuyama, M. Takahashi, K. Date, K. Hosaka, H. Murata, T. Tabata, and R. Yoshino, “Validation of himawari-8/ahi radiometric calibration based on two years of in-orbit data,” Journal of the Meteorological
Society of Japan. Ser. II, 2018.
[27] G. L. B. N. B. J. C. G. G. R. e. a. Martin, G., “Support for goes-r and himawari-8 in cspp geo.,” 2016.
[28] J. Li, C.-Y. Liu, H.-L. Huang, T. J. Schmit, X. Wu, W. P. Menzel, and J. J. Gurka, “Optimal cloud-clearing for airs radiances using modis,” IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 6,
pp. 1266–1278, 2005.
[29] J. R. Eyre and H. M. Woolf, “Transmittance of atmospheric gases in the microwave region: a fast model,” Applied optics, vol. 27, no. 15, pp. 3244–3249, 1988.
[30] C.-Y. Liu, J. Li, E. Weisz, T. J. Schmit, S. A. Ackerman, and H.-L. Huang, “Synergistic use of airs and modis radiance measurements for atmospheric profiling,” Geophysical Research Letters, vol. 35, no. 21,
2008.
[31] H. Letu, K. Yang, T. Y. Nakajima, H. Ishimoto, T. M. Nagao, J. Riedi, A. J. Baran, R. Ma, T. Wang, H. Shang, et al., “High-resolution retrieval of cloud microphysical properties and surface solar radiation using himawari-8/ahi next-generation geostationary satellite,” Remote Sensing of Environment, vol. 239, p. 111583, 2020.
[32] Y.-J. Noh, J. M. Haynes, S. D. Miller, C. J. Seaman, A. K. Heidinger, J. Weinrich, M. S. Kulie, M. Niznik, and B. J. Daub, “A framework for satellite-based 3d cloud data: An overview of the viirs cloud base height retrieval and user engagement for aviation applications,” Remote Sensing, vol. 14, no. 21, p. 5524, 2022.
[33] W. P. Menzel, R. A. Frey, H. Zhang, D. P. Wylie, C. C. Moeller, R. E. Holz, B. Maddux, B. A. Baum, K. I. Strabala, and L. E. Gumley, “Modis global cloud-top pressure and amount estimation: Algorithm description and results,” Journal of Applied Meteorology and Climatology, vol. 47, no. 4, pp. 1175–1198, 2008.
[34] U. S. N. B. of Standards and F. E. Nicodemus, Geometrical consider- ations and nomenclature for reflectance, vol. 160. US Department of Commerce, National Bureau of Standards Washington, DC, USA, 1977.
[35] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles. John Wiley & Sons, 2008.
[36] H. Wann Jensen, S. R. Marschner, M. Levoy, and P. Hanrahan, “A practical model for subsurface light transport,” in Seminal Graphics Papers: Pushing the Boundaries, Volume 2, pp. 319–326, 2023. |