博碩士論文 111022603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:3.14.251.43
姓名 馬若思(Rose Angeli Tabanao Macagga)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 評估菲律賓珊瑚礁區域的海洋熱浪與海洋酸化現象
(Evaluation of Marine Heatwaves and Ocean Acidification Phenomena on Coral Reef Regions in the Philippines)
相關論文
★ 臺灣鄰近海域的海洋熱浪及海洋寒潮事件★ 2015年至2022年西北太平洋颱風對浮游植物和海表溫度的動態反應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-1以後開放)
摘要(中) 大氣中的二氧化碳濃度持續上升,導致了海洋溫度升高和海水酸化,對珊瑚礁生態系統構成了重大威脅,並引發珊瑚白化以及重大的生物地球化學和社會經濟影響。雖然已有一些研究探討了菲律賓及其周邊地區的相關現象,但在整合海洋熱浪、海洋酸化以及珊瑚白化指數(度加熱週指數)的大規模評估上仍存在關鍵缺口。本研究利用衛星和再分析數據對1985年至2022年間菲律賓周邊水域所發生的海洋熱浪、海洋酸化事件和珊瑚白化指數進行了全面評估,並關注於十二個珊瑚棲息地來進一步檢查這些現象對此棲息環境的影響。研究區域被分為三組海域,調查了包含菲律賓北部、西部和東部(的珊瑚棲息地的海洋環境時空動態。研究結果指出了六月是菲律賓北部海域應對海水暖化最脆弱的月份,而六月對於菲律賓西部海域則是酸化最嚴重的月份。基於海洋熱浪指數和海水表面溫度、pH值和海洋表面二氧化碳分壓的經驗正交函數變化主要模式結果顯示,達沃東部(點L)是菲律賓最脆弱的珊瑚礁點,其次是林加延灣海岸(點E)。達沃東部(點L)在2020年出現了海洋熱浪的最久平均持續時間,為90.5天/次,而林加延灣海岸(點E)在2022年經歷了最多的海洋熱浪總天數,為293天。林加延灣海岸(點E)在2022年7月和8月達到了最高的度加熱週數值,為8.94°C-週。另一方面,大尺度氣候特徵如厄爾尼諾-南方振盪(ENSO)和太平洋年代際振盪(PDO)的綜合效應顯著影響了研究區域的海水表面溫度異常和海洋熱浪事件的發生。總而言之,本研究調查了高風險和脆弱的珊瑚礁區域,以及分析海洋環境壓力因子之間複雜交互作用,為菲律賓海洋研究人員和決策者實施針對性的珊瑚棲息地保護和緩解措施提供了寶貴的參考依據。
摘要(英) Ocean warming and acidification, driven by increasing atmospheric CO2 levels, pose significant threats to coral reef ecosystems, resulting in coral bleaching and significant biogeochemical and socioeconomic consequences. While some research has explored these phenomena in the Philippines and its surrounding areas, there remains a critical gap in large-scale assessments integrating marine heatwaves (MHWs), ocean acidification (OA), and coral bleaching, using the index Degree Heating Weeks (DHW). This study conducted a comprehensive evaluation of MHWs, OA, and coral bleaching indices in the surrounding waters of the Philippines from 1985 to 2022, utilizing satellite and reanalysis data. Twelve coral reef points were selected to further examine these phenomena and their effects on coral reefs. The study area was divided into three groups, providing a detailed examination of the spatiotemporal dynamics of these stressors in the north, west, and east of the Philippines. The study identified that June is the most vulnerable month for Group I to warming and for Group II to acidification. Based on the MHW indices and shifts in the patterns of the leading mode of EOF of SST, pH, and spCO2, the Davao Oriental (Point L) is the most vulnerable coral reef point for the Philippines, followed by the coast of Lingayen Gulf (Point E). Point L achieved the highest average MHW duration with 90.5 days/ times in 2020, while Point E experienced the maximum total MHW days in 2022 with 293 days. The highest DHW value reached by Point E was 8.94°C-weeks in July and August 2022. Additionally, the combined effect of climate indices such as ENSO and PDO affects the SST anomaly and MHW occurrences in the study area. The identification of high-risk and vulnerable coral reef regions, along with insights into the complex interactions between stressors, provides valuable guidance for marine researchers and decision-makers in implementing targeted conservation and mitigation measures.
關鍵字(中) ★ 海洋熱浪
★ 海洋酸化
★ 度加熱週指數
★ 厄爾尼諾-南方振
★ 太平洋年代際振盪
關鍵字(英) ★ Marine heatwaves
★ Ocean acidification
★ Degree Heating Weeks
★ El Niño-Southern Oscillation
★ Pacific Decadal Oscillation
論文目次 Chinese Abstract…………………………………………………………………………...…...i
English Abstract…………………………………………………………………………...…...ii
Acknowledgements...………………………………………………………………………….iii
Table of Contents……………………………………………………………………………....v
List of Figures………………………………………………………….……………………vii
List of Tables………………………………...………………….…………………………. ix
Explanation of Symbols……………………………………………………………………...x
Chapter I Introduction……………………………………………………………………….…1
1-1 Background………………………………………………………………………………1
1-1-1 Marine Heatwaves…………………………………………………………………...1
1-1-2 Ocean Acidification………………………………………………………………….1
1-2 Coral Reefs………………………………………………………………………….……1
1-2-1 Coral Reefs in the Philippines………………………………………………….…….2
1-3 Motivation and Objectives……………………………………………………………….2
Chapter II Data and Methods…………………………………………………………….…...4
2-1 Study Area…………………………………………………………………………….….4
2-2 Data Sources and Process Flowchart………………………………………………….….7
2-3 Thermal Data………………………………………………………………………….….8
2-3-1 Sea Surface Temperature…………………………………………………………….8
2-3-2 Marine Heatwave Indices………………………………………………………….…8
2-3-3 Degree Heating Weeks……….………………………………………………….….8
2-4 Ocean Current Data…………………………………………………………………….9
2-5 Biogeochemistry Data…………….……………………….……………………………9
2-6 Climate Patterns………………………………………………………………………...10
Chapter III Results……………………………………………….………………………...….11
3-1 Sea Surface Temperature Variation……………………….………………………….…11
3-2 Ocean Current Variation………………………………….………………………….….16
3-3 Spatiotemporal Variation of MHW Indices……………….…………………………….18
3-3-1 Coral Habitats near the Luzon Strait……………….….…………………………….19
3-3-2 Coral Habitats of the Western Philippines in the SCS……….……….……………22
3-3-3 Coral Habitats of the Eastern Philippines in the Pacific………………………...…...24
3-4 Possibility of Coral Bleaching……………………………………………………….….26
3-5 Ocean Acidification Trends………………………………………………………….….29
Chapter IV Discussion………………………………………………………………...............38
4-1 Identifying Vulnerable Coral Reef Regions Susceptible to Coral Bleaching………...….38
4-1-1 Vulnerable Coral Reef Regions in the Northern Philippines…...………...……...….38
4-1-2 Vulnerable Coral Reef Regions in the Western Philippines ………….…………......38
4-1-3 Vulnerable Coral Reef Regions in the Eastern Philippines……...………………....39
4-2 Impacts of Different Phases of ENSO and PDO on the Severity of MHW Events…...….40
4-2-1 Combined Effect of ENSO and PDO on SST Anomalies………………...……...….40
4-2-2 Co-Occurrence of ENSO and PDO and their Effect on MHWs…………………......42
Chapter V Conclusion ……………………………………………………….…………….….44
Bibliography……………………………………………………………………………….….46
Appendix A…………………………………………………………………………………...51
Appendix B…………………………………………………………………………………...52
Appendix C…………………………………………………………………………………...53
參考文獻 [1] IPCC, Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden, and C.E. Hanson, Eds. Cambridge, UK: Cambridge University Press, 2007, 976 pp.
[2] L. Cheng, J. Abraham, Z. Hausfather, and K. E. Trenberth, “How fast are the oceans warming?,” Science, vol. 363, no. 6423, pp. 128–129, Jan. 2019. doi:10.1126/science.aav7619
[3] A. J. Hobday et al., “A hierarchical approach to defining marine heatwaves,” Progress in Oceanography, vol. 141, pp. 227–238, Feb. 2016. doi:10.1016/j.pocean.2015.12.014
[4] IPCC, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Core Writing Team, R.K. Pachauri, and L.A. Meyer, Eds. Geneva, Switzerland: IPCC, 2014, 151 pp
[5] N. J. Holbrook et al., “A global assessment of marine heatwaves and their drivers,” Nature Communications, vol. 10, no. 1, Jun. 2019. doi:10.1038/s41467-019-10206-z
[6] T. P. Hughes et al., “Global warming and recurrent mass bleaching of corals,” Nature, vol. 543, no. 7645, pp. 373–377, Mar. 2017. doi:10.1038/nature21707
[7] T. L. Frölicher, E. M. Fischer, and N. Gruber, “Marine heatwaves under Global Warming,” Nature, vol. 560, no. 7718, pp. 360–364, Aug. 2018. doi:10.1038/s41586-018-0383-9
[8] E. C. Oliver et al., “Longer and more frequent marine heatwaves over the past century,” Nature Communications, vol. 9, no. 1, Apr. 2018. doi:10.1038/s41467-018-03732-9
[9] C. Hauri et al., “Modulation of ocean acidification by decadal climate variability in the Gulf of Alaska,” Communications Earth & Environment, vol. 2, no. 1, Sep. 2021. doi:10.1038/s43247-021-00254-z
[10] M. Ishizu, Y. Miyazawa, and X. Guo, “Long-term variations in ocean acidification indices in the northwest Pacific from 1993 to 2018,” Climatic Change, vol. 168, no. 3–4, Oct. 2021. doi:10.1007/s10584-021-03239-1
[11] K. R. Anthony, D. I. Kline, G. Diaz-Pulido, S. Dove, and O. Hoegh-Guldberg, “Ocean acidification causes bleaching and productivity loss in coral reef builders,” Proceedings of the National Academy of Sciences, vol. 105, no. 45, pp. 17442–17446, Nov. 2008. doi:10.1073/pnas.0804478105
[12] O. Hoegh-Guldberg, E. S. Poloczanska, W. Skirving, and S. Dove, “Coral reef ecosystems under climate change and ocean acidification,” Frontiers in Marine Science, vol. 4, May 2017. doi:10.3389/fmars.2017.00158
[13] O. Hoegh-Guldberg, “Climate change, coral bleaching and the future of the world’s coral reefs,” Marine and Freshwater Research, 1999. doi:10.1071/mf99078
[14] J. Erez, S. Reynaud, J. Silverman, K. Schneider, and D. Allemand, “Coral calcification under ocean acidification and Global Change,” Coral Reefs: An Ecosystem in Transition, pp. 151–176, Nov. 2010. doi:10.1007/978-94-007-0114-4_10
[15] W. Skirving, et al., “Extreme events and perturbations of coastal ecosystems,” Remote Sensing and Digital Image Processing, pp. 11–25, 2006. doi:10.1007/1-4020-3968-9_2
[16] E. D. Gomez, P. M. Aliño, H. T. Yap, and W. Y. Licuanan, “A review of the status of Philippine reefs,” Marine Pollution Bulletin, vol. 29, no. 1–3, pp. 62–68, Jan. 1994. doi:10.1016/0025-326x(94)90427-8
[17] C. L. Nañola, P. M. Aliño, and K. E. Carpenter, “Exploitation-related reef fish species richness depletion in the epicenter of Marine Biodiversity,” Environmental Biology of Fishes, vol. 90, no. 4, pp. 405–420, Dec. 2010. doi:10.1007/s10641-010-9750-6
[18] W. Y. Licuanan, R. Robles, and M. Reyes, “Status and recent trends in coral reefs of the Philippines,” Marine Pollution Bulletin, vol. 142, pp. 544–550, May 2019. doi:10.1016/j.marpolbul.2019.04.013
[19] J. P. Da-Anoy, P. C. Cabaitan, and C. Conaco, “Species variability in the response to elevated temperature of select corals in north-western Philippines,” Journal of the Marine Biological Association of the United Kingdom, vol. 99, no. 06, pp. 1273–1279, Mar. 2019. doi:10.1017/s0025315419000158
[20] R. R. Isah, I. C. Enochs, and M. L. San Diego-McGlone, “Sea surface carbonate dynamics at reefs of Bolinao, Philippines: Seasonal variation and Fish Mariculture-induced forcing,” Frontiers in Marine Science, vol. 9, Nov. 2022. doi:10.3389/fmars.2022.858853
[21] R. C. Babcock et al., “Recurrent coral bleaching in north-Western Australia and associated declines in coral cover,” Marine and Freshwater Research, vol. 72, no. 5, p. 620, 2021. doi:10.1071/mf19378
[22] Y. Chen, F. Zhai, P. Li, Y. Gu, and K. Wu, “Extreme 2020 summer ssts in the northern South China Sea: Implications for the Beibu Gulf Coral bleaching,” Journal of Climate, vol. 35, no. 13, pp. 4177–4190, Jul. 2022. doi:10.1175/jcli-d-21-0649.1
[23] B. Edullantes et al., “Marine heatwaves and their impacts: Research perspectives in the Philippines,” Philippine Journal of Science, vol. 151, no. 5, Aug. 2022. doi:10.56899/151.05.28
[24] B. Edullantes et al., “Characteristics of marine heatwaves in the Philippines,” Regional Studies in Marine Science, vol. 62, p. 102934, Sep. 2023. doi:10.1016/j.rsma.2023.102934
[25] Y. Yao and C. Wang, “Variations in summer marine heatwaves in the South China Sea,” Journal of Geophysical Research: Oceans, vol. 126, no. 10, Oct. 2021. doi:10.1029/2021jc017792
[26] H.-J. Tan, R.-S. Cai, and R.-G. Wu, “Summer marine heatwaves in the South China Sea: Trend, variability and possible causes,” Advances in Climate Change Research, vol. 13, no. 3, pp. 323–332, Jun. 2022. doi:10.1016/j.accre.2022.04.003
[27] Q. Song, Y. Yao, and C. Wang, “Response of future Summer marine heatwaves in the South China Sea to enhanced Western Pacific Subtropical high,” Geophysical Research Letters, vol. 50, no. 14, Jul. 2023. doi:10.1029/2023gl103667
[28] M. Reyes, R. Pavia, and R. van Hooidonk, “Ocean acidification in the Philippines and the potential role of water pollution management in mitigating an unaddressed threat,” Regional Environmental Change, vol. 23, no. 3, Aug. 2023. doi:10.1007/s10113-023-02102-6
[29] S. A. Foo and G. P. Asner, “Scaling up coral reef restoration using Remote Sensing Technology,” Frontiers in Marine Science, vol. 6, Mar. 2019. doi:10.3389/fmars.2019.00079
[30] A. Licuanan, M.Z. Reyes, K. Luzon, M.A.A. Chan, and W. Licuanan, "Initial Findings of the Nationwide Assessment of Philippine Coral Reefs," Philippine Journal of Science, vol. 146, no. 2, pp. 177-185, 2017.
[31] P. Hsu et al., “Tide‐induced periodic sea surface temperature drops in the coral reef area of Nanwan Bay, Southern Taiwan,” Journal of Geophysical Research: Oceans, vol. 125, no. 4, Apr. 2020. doi:10.1029/2019jc015226
[32] W. Skirving et al., “Coral temp and the coral reef watch Coral Bleaching Heat Stress Product Suite version 3.1,” Remote Sensing, vol. 12, no. 23, p. 3856, Nov. 2020. doi:10.3390/rs12233856
[33] P. W. Glynn and L. D’Croz, “Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality,” Coral Reefs, vol. 8, no. 4, pp. 181–191, Apr. 1990. doi:10.1007/bf00265009
[34] G. Liu, A. E. Strong, and W. Skirving, “Remote sensing of sea surface temperatures during 2002 barrier reef coral bleaching,” Eos, Transactions American Geophysical Union, vol. 84, no. 15, pp. 137–141, Apr. 2003. doi:10.1029/2003eo150001
[35] M.-H. Rio, S. Mulet, and N. Picot, "Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents," Geophysical Research Letters, vol. 41, 2014, doi: 10.1002/2014GL061773.
[36] Global Ocean Biogeochemistry Hindcast, E.U. Copernicus Marine Service Information (CMEMS), Marine Data Store (MDS). DOI: 10.48670/moi-00019 (accessed Dec. 1, 2023).
[37] Global Ocean Biogeochemistry Analysis and Forecast, E.U. Copernicus Marine Service Information (CMEMS), Marine Data Store (MDS). DOI: 10.48670/moi-00015 (accessed Dec. 1, 2023).
[38] N. C. P. Center, “NOAA’s Climate Prediction Center,” Climate Prediction Center, https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed Jan. 21, 2024).
[39] N. J. Mantua, S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, “A Pacific Interdecadal climate oscillation with impacts on salmon production,” Bulletin of the American Meteorological Society, vol. 78, no. 6, pp. 1069–1079, Jun. 1997. doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
[40] M. Newman et al., “The Pacific Decadal Oscillation, revisited,” Journal of Climate, vol. 29, no. 12, pp. 4399–4427, Jun. 2016. doi:10.1175/jcli-d-15-0508.1
[41] J. Matsumoto, L. M. Olaguera, D. Nguyen‐Le, H. Kubota, and M. Q. Villafuerte, “Climatological seasonal changes of wind and rainfall in the Philippines,” International Journal of Climatology, vol. 40, no. 11, pp. 4843–4857, Jan. 2020. doi:10.1002/joc.6492
[42] G. R. Bigg, T. D. Jickells, P. S. Liss, and T. J. Osborn, “The role of the oceans in climate,” International Journal of Climatology, vol. 23, no. 10, pp. 1127–1159, Aug. 2003. doi:10.1002/joc.926
[43] J. Röhrs et al., “Surface currents in operational oceanography: Key applications, mechanisms, and methods,” Journal of Operational Oceanography, vol. 16, no. 1, pp. 60–88, Mar. 2021. doi:10.1080/1755876x.2021.1903221
[44] T. Mitsuguchi, P. X. Dang, H. Kitagawa, M. Yoneda, and Y. Shibata, “Tropical south china sea surface 14C record in an annually-banded coral,” Radiocarbon, vol. 49, no. 2, pp. 905–914, 2007. doi:10.1017/s0033822200042776
[45] J. Hu, H. Kawamura, H. Hong, and Y. Qi, “A Review on the Currents in the South China Sea: Seasonal Circulation, South China Sea Warm Current and Kuroshio Intrusion,” Journal of Oceanography, vol. 56, no. 6, pp. 607–624, 2000. doi:10.1023/a:1011117531252
[46] C. Yang, X. Chen, X. Cheng, and B. Qiu, “Annual versus semi-annual eddy kinetic energy variability in the Celebes Sea,” Journal of Oceanography, vol. 76, no. 6, pp. 401–418, Jun. 2020. doi:10.1007/s10872-020-00553-7
[47] T. Qu and R. Lukas, “The bifurcation of the North Equatorial Current in the Pacific,” Journal of Physical Oceanography, vol. 33, no. 1, pp. 5–18, Jan. 2003. doi:10.1175/1520-0485(2003)033<0005:TBOTNE>2.0.co;2
[48] T. M. DeCarlo et al., “Mass coral mortality under local amplification of 2 °C ocean warming,” Scientific Reports, vol. 7, no. 1, Mar. 2017. doi:10.1038/srep44586
[49] H. O. Arceo, M. C. Quibilan, P. M. Aliño, G. Lim, and W. Y. Licuanan, “Coral bleaching in Philippine reefs: Coincident evidences with mesoscale thermal anomalies,” Bulletin of Marine Science, vol. 69, no. 2, pp. 579–593, Sep. 2001.
[50] D. C. Claar, L. Szostek, J. M. McDevitt-Irwin, J. J. Schanze, and J. K. Baum, "Global patterns and impacts of El Niño events on coral reefs: A meta-analysis," PloS One, vol. 13, no. 2, p. e0190957, 2018. Available: https://doi.org/10.1371/journal.pone.0190957
[51] H. Zhao and C. Wang, “Interdecadal modulation on the relationship between ENSO and typhoon activity during the late season in the western North Pacific,” Climate Dynamics, vol. 47, no. 1–2, pp. 315–328, Oct. 2015. doi:10.1007/s00382-015-2837-1
[52] W. Chen, J. Park, B. Dong, R. Lu, and W. Jung, “The relationship between El Niño and the western North Pacific summer climate in a coupled GCM: Role of the transition of El Niño decaying phases,” Journal of Geophysical Research: Atmospheres, vol. 117, no. D12, Jun. 2012. doi:10.1029/2011jd017385
指導教授 許伯駿(Po-Chun Hsu) 審核日期 2024-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明