參考文獻 |
[1] K. Riaz, M. McAfee, and S. S. Gharbia, “Management of climate resilience: Exploring the potential of digital twin technology, 3d city modelling, and early warning systems,” Sensors, vol. 23, no. 5, 2023. [Online]. Available: https://www.mdpi.com/1424-8220/23/5/2659
[2] K. I. Dale, E. C. D. Pope, A. R. Hopkinson, T. McCaie, and J. A. Lowe, “Environment-aware digital twins: Incorporating weather and climate information to support risk-based decision-making,” Artificial Intelligence for the Earth Systems, vol. 2, no. 4, p. e230023, 2023. [Online]. Available: https://journals.ametsoc.org/view/journals/aies/2/4/ AIES-D-23-0023.1.xml
[3] M. Datcu, D. Faur, E. Mamut, I. Nedelcu, C. Ionescu, and L. Miron, “Digital twin earth for climate change adapation: An ai based federated system,” in IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, 2023, pp. 1392–1395.
[4] A. Rasheed, O. San, and T. Kvamsdal, “Digital twin: Values, challenges and enablers from a modeling perspective,” IEEE Access, vol. 8, pp. 21980–22012, 2020.
[5] X. Wu, G. Lu, and Z. Wu, “Remote sensing technology in the construction of digital twin basins: Applications and prospects,” Water, vol. 15, no. 11, 2023. [Online]. Available: https://www.mdpi.com/ 2073-4441/15/11/2040
[6] K. E. Skouby and P. Lynggaard, “Smart home and smart city solutions enabled by 5g, iot, aai and cot services,” in 2014 International Conference on Contemporary Computing and Informatics (IC3I), 2014, pp. 874–878.
[7] S. Bresciani, A. Ferraris, and M. Del Giudice, “The management of organizational ambidexterity through alliances in a new context of analysis: Internet of things (iot) smart city projects,” Technological Forecasting and Social Change, vol. 136, pp. 331–338, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S0040162517302950
[8] J. Stubinger and L. Schneider, “Understanding smart city—a data-¨ driven literature review,” Sustainability, vol. 12, no. 20, 2020. [Online]. Available: https://www.mdpi.com/2071-1050/12/20/8460
[9] F. Dembski, U. Wossner, M. Letzgus, M. Ruddat, and C. Yamu,¨ “Urban digital twins for smart cities and citizens: The case study of herrenberg, germany,” Sustainability, vol. 12, no. 6, 2020. [Online]. Available: https://www.mdpi.com/2071-1050/12/6/2307
[10] A. Kirimtat, O. Krejcar, A. Kertesz, and M. F. Tasgetiren, “Future trends and current state of smart city concepts: A survey,” IEEE Access, vol. 8, pp. 86448–86467, 2020.
[11] D. Petrova-Antonova and S. Ilieva, “Digital twin modeling of smart cities,” in Human Interaction, Emerging Technologies and Future Applications III, T. Ahram, R. Taiar, K. Langlois, and A. Choplin, Eds. Cham: Springer International Publishing, 2021, pp. 384–390.
[12] N. Wedi, P. Bauer, I. Sandu, J. Hoffmann, S. Sheridan, R. Cereceda, T. Quintino, D. Thiemert, and T. Geenen, “Destination earth: Highperformance computing for weather and climate,” Computing in Science Engineering, vol. 24, no. 6, pp. 29–37, 2022.
[13] A.G. Pendergrass, “What precipitation is extreme?” Science, vol. 360, no. 6393, pp. 1072–1073, 2018. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.aat1871
[14] S. Roy, “Worst-case photovoltaic generation and power change distribution under dense cloud cover,” IEEE Transactions on Sustainable Energy, vol. 8, no. 3, pp. 1021–1028, 2017.
[15] A. K. Whitcraft, E. F. Vermote, I. Becker-Reshef, and C. O. Justice, “Cloud cover throughout the agricultural growing season: Impacts on passive optical earth observations,” Remote Sensing of Environment, vol. 156, pp. 438–447, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0034425714004179
[16] Central Weather Administration, “Weather forecast center,” cwa.gov. tw. https://www.cwa.gov.tw/V8/C/A/organ/WFC.html (accessed Jun. 4, 2024).
[17] European Centre for Medium-Range Weather Forecasts, “Global numerical modelling at the heart of ecmwf’s forecasts,” https://www.ecmwf.int https://www.ecmwf.int/en/about/media-centre/ focus/2022/global-numerical-modelling-heart-ecmwfs-forecasts (accessed Jun. 4, 2024).
[18] J. G. Powers, J. B. Klemp, W. C. Skamarock, C. A. Davis, J. Dudhia, D. O. Gill, J. L. Coen, D. J. Gochis, R. Ahmadov, S. E. Peckham, G. A. Grell, J. Michalakes, S. Trahan, S. G. Benjamin, C. R. Alexander, G. J. Dimego, W. Wang, C. S. Schwartz, G. S. Romine, Z. Liu, C. Snyder, F. Chen, M. J. Barlage, W. Yu, and M. G. Duda, “The weather research and forecasting model: Overview, system efforts, and future directions,” Bulletin of the American Meteorological Society, vol. 98, no. 8, pp. 1717 – 1737, 2017. [Online]. Available: https: //journals.ametsoc.org/view/journals/bams/98/8/bams-d-15-00308.1.xml
[19] M. Rzeszutek, A. Kłosowska, and R. Oleniacz, “Accuracy assessment of wrf model in the context of air quality modeling in complex terrain,” Sustainability, vol. 15, no. 16, 2023. [Online]. Available: https://www.mdpi.com/2071-1050/15/16/12576
[20] H.-H. H. B. J.-D. J. Chun-Chieh Wu, Hung-Chi Kuo, “Weather and climate research in taiwan: Potential application of gps/met data,” Terrestrial, Atmospheric and Oceanic Sciences Journal, vol. 11, no. 1, March. 2000.
[21] B.-F. Jeng, H.-J. Chen, S.-C. Lin, T.-M. Leou, M. S. Peng, S. W. Chang, W.-R. Hsu, and C.-P. Chang, “The limitedarea forecast systems at the central weather bureau in taiwan,” Weather and Forecasting, vol. 6, no. 1, pp. 155 – 180, 1991. [Online]. Available: https://journals.ametsoc.org/view/journals/wefo/6/1/1520-0434 1991 006 0155 tlafsa 2 0 co 2.xml
[22] X. Ren, X. Li, K. Ren, J. Song, Z. Xu, K. Deng, and X. Wang, “Deep learning-based weather prediction: A survey,” Big Data Research, vol. 23, p. 100178, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214579620300460
[23] N. Singh, S. Chaturvedi, and S. Akhter, “Weather forecasting using machine learning algorithm,” in 2019 International Conference on Signal Processing and Communication (ICSC), 2019, pp. 171–174.
[24] M. Hossain, B. Rekabdar, S. J. Louis, and S. Dascalu, “Forecasting the weather of nevada: A deep learning approach,” in 2015 International Joint Conference on Neural Networks (IJCNN), 2015, pp. 1–6.
[25] M. A. R. Suleman and S. Shridevi, “Short-term weather forecasting using spatial feature attention based lstm model,” IEEE Access, vol. 10, pp. 82456–82468, 2022.
[26] M. Safia, R. Abbas, and M. Aslani, “Classification of weather conditions based on supervised learning for swedish cities,” Atmosphere, vol. 14, no. 7, 2023. [Online]. Available: https://www.mdpi.com/2073-4433/14/ 7/1174
[27] M. Elhoseiny, S. Huang, and A. Elgammal, “Weather classification with deep convolutional neural networks,” in 2015 IEEE International Conference on Image Processing (ICIP), 2015, pp. 3349–3353.
[28] S. Wadhwa and R. G. Tiwari, “Machine learning-based weather prediction: A comparative study of regression and classification algorithms,” in 2023 International Conference in Advances in Power, Signal, and Information Technology (APSIT), 2023, pp. 487–492.
[29] E. Dritsas, M. Trigka, and P. Mylonas, “A multi-class classification approach for weather forecasting with machine learning techniques,” in 2022 17th International Workshop on Semantic and Social Media Adaptation Personalization (SMAP), 2022, pp. 1–5.
[30] F. Zhang, X. Wang, and J. Guan, “A novel multi-input multioutput recurrent neural network based on multimodal fusion and spatiotemporal prediction for 0–4 hour precipitation nowcasting,” Atmosphere, vol. 12, no. 12, 2021. [Online]. Available: https: //www.mdpi.com/2073-4433/12/12/1596
[31] D. So and D.-B. Shin, “Classification of precipitating clouds using satellite infrared observations and its implications for rainfall estimation,” Quarterly Journal of the Royal Meteorological Society, vol. 144, no. S1, pp. 133–144, 2018. [Online]. Available: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3288
[32] S. A. Ackerman, W. L. Smith, H. E. Revercomb, and J. D. Spinhirne, “The 27–28 october 1986 fire ifo cirrus case study: Spectral properties of cirrus clouds in the 8–12 µm window,” Monthly Weather Review, vol. 118, no. 11, pp. 2377 – 2388, 1990. [Online]. Available: https://journals.ametsoc.org/view/journals/ mwre/118/11/1520-0493 1990 118 2377 toficc 2 0 co 2.xml
[33] M. N. . K. T. Barnes, A.P., “Forecasting seasonal to sub-seasonal rainfall in great britain using convolutional-neural networks,” Theor Appl Climatol, vol. 151, p. 421–432, 2023.
[34] N. Otero and P. Horton, “Intercomparison of deep learning architectures for the prediction of precipitation fields with a focus on extremes,” Water Resources Research, vol. 59, no. 11, p. e2023WR035088, 2023, e2023WR035088 2023WR035088. [Online]. Available: https: //agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2023WR035088
[35] M. M. Hassan, M. A. T. Rony, M. A. R. Khan, M. M. Hassan, F. Yasmin, A. Nag, T. H. Zarin, A. K. Bairagi, S. Alshathri, and W. ElShafai, “Machine learning-based rainfall prediction: Unveiling insights and forecasting for improved preparedness,” IEEE Access, vol. 11, pp. 132196–132222, 2023.
[36] I. Lopez-Gomez, A. McGovern, S. Agrawal, and J. Hickey, “Global extreme heat forecasting using neural weather models,” Artificial Intelligence for the Earth Systems, vol. 2, no. 1, p. e220035, 2023. [Online]. Available: https://journals.ametsoc.org/view/journals/aies/2/1/ AIES-D-22-0035.1.xml
[37] A. K. Mishra, R. Gairola, A. Varma, and V. K. Agarwal, “Improved rainfall estimation over the indian region using satellite infrared technique,” Advances in Space Research, vol. 48, no. 1, pp. 49– 55, 2011. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/S027311771100144X
[38] D. So and D.-B. Shin, “Classification of precipitating clouds using satellite infrared observations and its implications for rainfall estimation,” Quarterly Journal of the Royal Meteorological Society, vol. 144, no. S1, pp. 133–144, 2018. [Online]. Available: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3288
[39] R. Zhang, Q. Liu, R. Hang, and G. Liu, “Predicting tropical cyclogenesis using a deep learning method from gridded satellite and era5 reanalysis data in the western north pacific basin,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–10, 2022.
[40] C. Wang, J. Xu, G. Tang, Y. Yang, and Y. Hong, “Infrared precipitation estimation using convolutional neural network,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 12, pp. 8612–8625, 2020.
[41] L. Harris, A. T. T. McRae, M. Chantry, P. D. Dueben, and T. N. Palmer, “A generative deep learning approach to stochastic downscaling of precipitation forecasts,” Journal of Advances in Modeling Earth Systems, vol. 14, no. 10, p. e2022MS003120, 2022, e2022MS003120 2022MS003120. [Online]. Available: https: //agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022MS003120
[42] D. P. W. P. e. a. Adewoyin, R.A., “Tru-net: a deep learning approach to high resolution prediction of rainfall,” Mach Learn, vol. 110, p. 2035–2062, 2021.
[43] R. Zhang, Q. Liu, R. Hang, and G. Liu, “Predicting tropical cyclogenesis using a deep learning method from gridded satellite and era5 reanalysis data in the western north pacific basin,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–10, 2022.
[44] S. Banara, T. Singh, and A. Chauhan, “Iot based weather monitoring system for smart cities: A comprehensive review,” in 2022 International Conference for Advancement in Technology (ICONAT), 2022, pp. 1–6.
[45] W. F. K. S. e. a. Wang, E.K., “Intelligent monitor for typhoon in iot system of smart city,” The Journal of Supercomputing, vol. 77, p. 3024–3043, 2021.
[46] A.-u. Rahman, S. Abbas, M. Gollapalli, R. Ahmed, S. Aftab, M. Ahmad, M. A. Khan, and A. Mosavi, “Rainfall prediction system using machine learning fusion for smart cities,” Sensors, vol. 22, no. 9, 2022. [Online]. Available: https://www.mdpi.com/1424-8220/22/9/3504
[47] K. Maaloul and L. Brahim, “Weather forecasting and prediction in smart cities using machine learning algorithm,” 02 2023.
[48] M. A. Zaytar and C. El Amrani, “Sequence to sequence weather forecasting with long short-term memory recurrent neural networks,” International Journal of Computer Applications, vol. 143, pp. 7–11, 06 2016.
[49] R. Lam, A. Sanchez-Gonzalez, M. Willson, P. Wirnsberger, M. Fortunato, F. Alet, S. Ravuri, T. Ewalds, Z. EatonRosen, W. Hu, A. Merose, S. Hoyer, G. Holland, O. Vinyals, J. Stott, A. Pritzel, S. Mohamed, and P. Battaglia, “Learning skillful medium-range global weather forecasting,” Science, vol. 382, no. 6677, pp. 1416–1421, 2023. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.adi2336
[50] K. Bi, L. Xie, H. Zhang, X. Chen, X. Gu, and Q. Tian, “Accurate medium-range global weather forecasting with 3d neural networks,” Nature, vol. 619, pp. 533–538, 2023. [Online]. Available: https://doi.org/10.1038/s41586-023-06185-3
[51] Q. Zhao, Y. Liu, W. Yao, and Y. Yao, “Hourly rainfall forecast model using supervised learning algorithm,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–9, 2022.
[52] P. Hess and N. Boers, “Deep learning for improving numerical weather prediction of heavy rainfall,” Journal of Advances in Modeling Earth Systems, vol. 14, no. 3, p. e2021MS002765, 2022, e2021MS002765 2021MS002765. [Online]. Available: https: //agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021MS002765
[53] M. N. . K. T. Barnes, A.P., “Forecasting seasonal to sub-seasonal rainfall in great britain using convolutional-neural networks,” Theoretical and Applied Climatology, vol. 151, p. 421–432, 2021.
[54] R. Zhang, Q. Liu, R. Hang, and G. Liu, “Predicting tropical cyclogenesis using a deep learning method from gridded satellite and era5 reanalysis data in the western north pacific basin,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–10, 2022.
[55] M. W. Berry, A. Mohamed, and B. W. Yap, Supervised and unsupervised learning for data science. Springer, 2019.
[56] World Meteorological Organization, “The sun’s impact on the earth,” wmo.int https://wmo.int/suns-impact-earth (accessed Jun. 13, 2024).
[57] W.-T. Li, M.-C. Ho, and C. Yang, “Study on design strategy for sustainable development of chinese solar term culture,” Sustainability, vol. 10, no. 12, 2018. [Online]. Available: https://www.mdpi.com/ 2071-1050/10/12/4355
[58] K.-S. Chung, H.-J. Chiu, C.-Y. Liu, and M.-Y. Lin, “Satellite observation for evaluating cloud properties of the microphysical schemes in weather research and forecasting simulation: A case study of the mei-yu front precipitation system,” Remote Sensing, vol. 12, no. 18, 2020. [Online]. Available: https://www.mdpi.com/2072-4292/12/18/3060
[59] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[60] I. Gad and D. Hosahalli, “A comparative study of prediction and classification models on ncdc weather data,” International Journal of Computers and Applications, vol. 44, no. 5, pp. 414–425, 2022. [Online]. Available: https://doi.org/10.1080/1206212X.2020.1766769
[61] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5–32, 2001.
[62] J. H. Friedman, “Greedy function approximation: A gradient boosting machine,” The Annals of Statistics, vol. 29, no. 5, pp. 1189–1232, 2001. [Online]. Available: http://www.jstor.org/stable/2699986
[63] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’16. New York, NY, USA: Association for Computing Machinery, 2016, p. 785–794. [Online]. Available: https://doi.org/10.1145/2939672.2939785
[64] H.-H. Lin, C.-C. Tsai, J.-C. Liou, Y.-C. Chen, C.-Y. Lin, L.-Y. Lin, and K.-S. Chung, “Multi-weather evaluation of nowcasting methods including a new empirical blending scheme,” Atmosphere, vol. 11, no. 11, 2020. [Online]. Available: https://www.mdpi.com/2073-4433/ 11/11/1166
[65] C.-C. Tsai, J.-C. Liou, H.-H. Liao, Y.-C. Yu, Y.-C. Chen, C.-Y. Lin, K.-S. Chung, and B. J.-D. Jou, “Strategy analysis of the extrapolation adjusted by model prediction (examp) blending scheme for rainfall nowcasting,” Terrestrial, Atmospheric and Oceanic Sciences, vol. 34, no. 1, p. 16, 2023. [Online]. Available: https://doi.org/10.1007/s44195-023-00047-1 |