博碩士論文 111022605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:3.142.198.223
姓名 蘇德澤(Dimas Pradana Putra)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 2015年至2022年西北太平洋颱風對浮游植物和海表溫度的動態反應
(Dynamic Responses of Phytoplankton and Sea Surface Temperature to Typhoons in the Northwest Pacific (2015-2022))
相關論文
★ 評估菲律賓珊瑚礁區域的海洋熱浪與海洋酸化現象★ 臺灣鄰近海域的海洋熱浪及海洋寒潮事件
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-1以後開放)
摘要(中) 颱風對沿海和海洋環境影響深遠,包括對海洋動力學、生物地球化學循環及海洋生態系統的影響。本研究使用2015至2022年間來自向日葵衛星感測器和哥白尼海洋服務的衛星數據及再分析數據,探討颱風對西北太平洋地區浮游植物動態和海表溫度的影響。研究發現,在颱風中心250公里範圍內,二級颱風過境後4至5天,葉綠素濃度顯著增加,作為浮游植物生物量的指標。與開放海域相比,沿海地區因陸地營養物輸入和沿岸湧升作用而有更高的基線葉綠素濃度和更強烈的浮游植物增長。海表溫度分析顯示,颱風來臨前海表溫度先升高,隨後因湧升和大量降雨導致的淡水流入而顯著下降,且海表溫度變化幅度隨風暴強度增強。空間分析揭示沿海與開放水域在葉綠素和海表溫度動態上的顯著差異。此外,本研究發現颱風引發的葉綠素異常與厄爾尼諾-南方振盪(ENSO)狀態間存在顯著相關,特別是在高強度颱風中,顯示ENSO對颱風強度和海洋營養物動態有調節作用。深度剖析進一步揭示了這種相關性的垂直分布模式,反映了直接由颱風驅動的混合作用與ENSO引起的大尺度海洋循環變化之間的互動,特別是營養物從深層到表層的重新分布。
摘要(英) Typhoons exert profound impacts on coastal and marine environments through their influence on ocean dynamics, biogeochemical cycles, and marine ecosystems. This study investigates the effects of typhoons on phytoplankton dynamics and sea surface temperature (SST) in the North West Pacific region from 2015 to 2022 using satellite data from the Himawari sensor and the Copernicus Marine Service. Analysis of chlorophyll-a concentrations, a proxy for phytoplankton biomass, revealed pronounced increases within a 250 km radius of the typhoon center, peaking 4-5 days after category 2 storm passages. Coastal areas exhibited higher baseline chlorophyll-a levels and more intense phytoplankton blooms compared to open ocean regions due to terrestrial nutrient inputs and coastal upwelling processes. Examination of SST patterns showed an initial increase before typhoon arrival, followed by a significant drop caused by upwelling and freshwater flux from heavy rainfall. The magnitude of SST changes varied with storm intensity, with category 5 typhoons inducing the highest SST peaks and subsequent declines within 250-500 km diameters. The spatial analysis highlighted differences in chlorophyll-a and SST responses between coastal and open ocean regions, underscoring the need for tailored strategies to mitigate typhoon impacts. Furthermore, the study uncovered a significant relationship between typhoon-induced chlorophyll-a anomalies and the El Niño-Southern Oscillation (ENSO) state, with stronger positive correlations in higher typhoon categories, suggesting that ENSO modulates both typhoon intensity and oceanic nutrient dynamics. Depth-resolved analyses revealed distinct vertical patterns in this relationship, reflecting the interplay between direct typhoon-driven mixing and larger-scale ENSO-induced changes in ocean circulation, particularly in the redistribution of nutrients from deeper layers to the surface.
關鍵字(中) ★ 颱風
★ 葉綠素
關鍵字(英) ★ Typhoon
★ Chlorophyll-a
論文目次 Chinese abstract ……………………………………………….……………………………… i
English Abstract ………………………………………………...…………………………… ii
Acknowledgments …………………………………………………..………………………. iii
Table of Contents …………………………………………………….……………………… iv
List of Figures ………………………………………………………………………….…..Vi
List of Tables………………………………………………………………….…………..Viii
Chapter I Introduction………………………………………………………………………….1
1-1 Background…………………………………………………………………………1
1-2 Literature Review ……………………………………………………………………3
Chapter II Study Area……………………………………………………………………….…5
Chapter III Data and Method………………………………………..…………………………8
3-1 Dataset…………………………………………………………………….………….8
3-1-1 International Best Track Archive for Climate Stewardship (IBTrACS)………..8
3-1-2 Himawari Satellite Dataset……………………………….…………………….9
3-1-3 Copernicus Ocean Dataset……………………………………………………11
3-1-4 ENSO Indices…………………………………………………………………12
3-2 Methodology………………………………………………………………………...12
3-2-1 Himawari SST and Chl-a Dataset Pre-Processing…………………….………13
3-2-2 ENSO Influence Analysis………………………………………………….…14
Chapter IV Result and Discussion…………………………………………………………....15
4-1 Result……………………………………………………………………………...15
4-1-1 Time Series Trends in Chl-a……………………………………………….….15
4-1-1-1 Chl-a from Himawari Level 3 Dataset……………………………..…..15
4-1-1-2 Chl-a from Copernicus Level 4 Dataset……………………….………20
4-1-2 Spatial Distribution of Chl-a………………………………………………….25
4-1-3 Time Series Trends in the SST Dataset………………………………………..31
4-1-3-1 SST from Himawari Level 3 Dataset…………………………………..31
4-1-3-2. SST from Copernicus Level 4 Dataset……………………….………..37
4-1-4 Spatial Distribution in SST Dataset…………………………………………39
4-1-5. Chl-a Distribution Variation in Two Bathymetry Areas……………….……..45
4-2 Discussion…………………………………………………………………………...52
4-2-1 Himawari Level 3 vs Copernicus Level 4 Dataset Comparison Discussion…..52
4-2-2 ENSO Influence…………………………………………………………….58
Chapter V Conclusion……………………………………………………………………….66
Bibliography…………………………………………………………………………….……68
Appendix……………………………………………………………………………………..86
參考文獻 [1] Emanuel, K. (2003). “Tropical Cyclones”. Annual Review of Earth and Planetary Sciences, 31, 2003, 75-104.
[2] McDowell, W. H. “Impacts of Hurricanes on Forest Hydrology and Biogeochemistry”. In D. F. Levia, D. Carlyle-Moses, & T. Tanaka (Eds.), Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions, Springer Netherlands, 2011, 643-657.
[3] Sobel, A. H., Lee, C.-Y., Camargo, S. J., Mandli, K. T., Emanuel, K. A., Mukhopadhyay, P., & Mahakur, M. “Tropical Cyclone Hazard to Mumbai in the Recent Historical Climate”. Monthly Weather Review, 147(7), 2019, 2355-2366.
[4] Li, W., Yang, C., & Sun, D. “Mining geophysical parameters through decision-tree analysis to determine correlation with tropical cyclone development. Computers & Geosciences, 35(2), 2009, 309-316.
[5] Lingling, L. “Tropical Cyclones, Oceanic Circulation and Climate”. In S. Suzanne (Ed.), Climate Change and Variability, IntechOpen, 2010, Ch. 4.
[6] Dube, S. K., Rao, A. D., Sinha, P. C., & Chittibabu, P. “Storm Surges: Worst Coastal Marine Hazard”. In Modelling and Monitoring of Coastal Marine Processes, Springer Netherlands, 2008, 125-140.
[7] Dullaart, J. C. M., Muis, S., Bloemendaal, N., Chertova, M. V., Couasnon, A., & Aerts, J. C. J. H. “Accounting for tropical cyclones more than doubles the global population exposed to low-probability coastal flooding”. Communications Earth & Environment, 2(1), 2021, 135.
[8] Eliot, M., & Pattiaratchi, C. “Remote forcing of water levels by tropical cyclones in southwest Australia”. Continental Shelf Research, 30(14), 2010, 1549-1561.
[9] Pattanayak, S., Mohanty, U. C., & Dube, S. K. “The Storm Surge Prediction over Bay of Bengal and Arabian Sea: A Review”. In U. C. Mohanty & S. G. Gopalakrishnan (Eds.), Advanced Numerical Modeling and Data Assimilation Techniques for Tropical Cyclone Prediction, Springer Netherlands, 2016, 691-723.
[10] Singh, O. P. “Tropical Cyclones: Trends, Forecasting and Mitigation”. In M. K. Jha (Ed.), Natural and Anthropogenic Disasters: Vulnerability, Preparedness and Mitigation, Springer Netherlands, 2010, 256-274.
[11] Zhiyuan, W., & Mack, C. “Response of the Coastal Ocean to Tropical Cyclones”. In L. Anthony (Ed.), Current Topics in Tropical Cyclone Research, IntechOpen, 2019, Ch. 4.
[12] Lagmay, A. M., & Kerle, N. “Typhoons: Storm-surge models helped for Hagupit”. Nature, 519, 2015, 7544.
[13] Bacopoulos, P., & Clark, R. R. “Coastal erosion and structural damage due to four consecutive-year major hurricanes: Beach projects afford resilience and coastal protection”. Ocean & Coastal Management, 209, 2021, 105643.
[14] Chen, C.-Y., Chen, L.-K., Yu, F.-C., Lin, S.-C., Lin, Y.-C., Lee, C.-L., & Wang, Y.-T. “Landslides affecting sedimentary characteristics of reservoir basin”. Environmental Earth Sciences”, 59(8), 2010, 1693-1702.
[15] Dolojan, N. L. J., Moriguchi, S., Hashimoto, M., Tinh, N. X., Tanaka, H., & Terada, K. “Hydrologic-geotechnical modelling of shallow landslide and flood hazards caused by heavy rainfall”. Engineering Geology, 323, 2023, 107184.
[16] Seo, J. I., Nakamura, F., Akasaka, T., Ichiyanagi, H., & Chun, K. W. “Large wood export regulated by the pattern and intensity of precipitation along a latitudinal gradient in the Japanese archipelago”. Water Resources Research, 48(3), 2012.
[17] Tarhule, A. ”Damaging Rainfall and Flooding: The Other Sahel Hazards”. Climatic Change, 72(3), 2005, 355-377.
[18] Xi, W. “Synergistic effects of tropical cyclones on forest ecosystems: a global synthesis”. Journal of Forestry Research, 26(1), 2015, 1-21.
[19] D’Alelio, D., Rampone, S., Cusano, L. M., Morfino, V., Russo, L., Sanseverino, N., Cloern, J. E., & Lomas, M. W. “Machine learning identifies a strong association between warming and reduced primary productivity in an oligotrophic ocean gyre”. Scientific Reports, 10(1), 2020, 3287.
[20] Harada, N. “Review: Potential catastrophic reduction of sea ice in the western Arctic Ocean: Its impact on biogeochemical cycles and marine ecosystems”. Global and Planetary Change, 136, 2016, 1-17.
[21] Hung, C.-C., Gong, G.-C., Lee, M.-A., Liao, C.-H., Chang, Y., Shih, Y.-Y., Chen, K.-S., Chen, M.-H., & Santschi, P. H. “Impacts of Typhoons on Nutrient Supply and Potential Fish Production in the Southern East China Sea”. In D. L. Tang & G. Sui (Eds.), Typhoon Impact and Crisis Management, Springer Berlin Heidelberg, 2014, 267-282.
[22] Lin, S., Zhang, W.-Z., Shang, S.-P., & Hong, H.-S. “Ocean response to typhoons in the western North Pacific: Composite results from Argo data”. Deep Sea Research Part I: Oceanographic Research Papers, 123, 2017, 62-74.
[23] Pedrosa-Pàmies, R., Conte, M. H., Weber, J. C., & Johnson, R. “Hurricanes Enhance Labile Carbon Export to the Deep Ocean”. Geophysical Research Letters, 46(17-18), 2019, 10484-10494.
[24] Priddle, J., Hawes, I., ELLIS‐EVANS, J. C., & Smith, T. J. “Antarctic aquatic ecosystems as habitats for phytoplankton”. Biological Reviews, 61(3), 1986, 199-238.
[25] Šolić, M., Šantić, D., Šestanović, S., Bojanić, N., Grbec, B., Jozić, S., Vrdoljak, A., Ordulj, M., Matić, F., Kušpilić, G., & Gladan, Ž. N. “Impact of water column stability dynamics on the succession of plankton food web types in the offshore area of the Adriatic Sea”. Journal of Sea Research, 158, 2020, 101860.
[26] Wang, T., Zhang, S., Chen, F., Ma, Y., Jiang, C., & Yu, J. “Influence of sequential tropical cyclones on phytoplankton blooms in the northwestern South China Sea”. Journal of Oceanology and Limnology, 39(1), 2021, 14-25.
[27] Zhang, W., Hui, W., Lyu, W., Cao, D., Li, P., Zheng, D., ... & Zhang, Y. “FY-4A LMI observed lightning activity in Super Typhoon Mangkhut (2018) in comparison with WWLLN data”. Journal of Meteorological Research, 34(2), 2020, 336-352.
[28] Johnson, J. E., Allain, V., Basel, B., Bell, J. D., Chin, A., Dutra, L. X. C., Hooper, E., Loubser, D., Lough, J., Moore, B. R., & Nicol, S. “Impacts of Climate Change on Marine Resources in the Pacific Island Region”. In L. Kumar (Ed.), Climate Change and Impacts in the Pacific, Springer International Publishing, 2020, 359-402.
[29] Moon, I.-J., Knutson, T. R., Kim, H.-J., Babanin, A. V., & Jeong, J.-Y. “Why Do Eastern North Pacific Hurricanes Intensify More and Faster than Their Western-Counterpart Typhoons with Less Ocean Energy?” Bulletin of the American Meteorological Society, 103(11), 2022, E2604-E2627.
[30] Palumbi, S. R., Sandifer, P. A., Allan, J. D., Beck, M. W., Fautin, D. G., Fogarty, M. J., Halpern, B. S., Incze, L. S., Leong, J.-A., Norse, E., Stachowicz, J. J., & Wall, D. H. “Managing for ocean biodiversity to sustain marine ecosystem services”. Frontiers in Ecology and the Environment, 7(4), 2009, 204-211.
[31] Bala Subrahamanyam, D., & Ramachandran, R. “Wind Speed dependence of Air-Sea Exchange parameters over the Indian Ocean during INDOEX, IFP-99”. Ann. Geophys., 21(7), 2003, 1667-1679.
[32] Saravanan, R., & Chang, P. “Thermodynamic Coupling and Predictability of Tropical Sea Surface Temperature”. In Earth′s Climate, 2004, 171-180.
[33] Wang, J., Pan, F., An, P., Han, G., Jiang, K., Song, Y., Huang, N., Zhang, Z., Ma, S., Chen, X., & Pan, Z. “Atmospheric Water Vapor Transport between Ocean and Land under Climate Warming”. Journal of Climate, 36(17), 2023, 5861-5880.
[34] Zahn, M., & Allan, R. P. “Changes in water vapor transports of the ascending branch of the tropical circulation”. Journal of Geophysical Research: Atmospheres, 116(D18), 2011.
[35] Hibbert, K., Glenn, E., Smith, T. M., & González-Cruz, J. E. ”Changes to Sea Surface Temperatures and Vertical Wind Shear and Their Influence on Tropical Cyclone Activity in the Caribbean and the Main Developing Region”. Atmosphere, 14(6), 2023, 999.
[36] Li, D.-Y., & Tan, Z.-M. “The Role of Ocean–Atmosphere Interactions in Tropical Cyclone Intensity Predictability”. Journal of the Atmospheric Sciences, 80(5), 2023, 1213-1226.
[37] Lloyd, I. D., & Vecchi, G. A. “Observational Evidence for Oceanic Controls on Hurricane Intensity”. Journal of Climate, 24(4), 2011, 1138-1153.
[38] Michaels, P. J., Knappenberger, P. C., & Davis, R. E. “Sea-surface temperatures and tropical cyclones in the Atlantic basin”. Geophysical Research Letters, 33(9), 2006.
[39] Steenhof, P. A., & Gough, W. A. “The impact of tropical sea surface temperatures on various measures of Atlantic tropical cyclone activity”. Theoretical and Applied Climatology, 92(3), 2008, 249-255.
[40] Curtis, S. “The El Niño–Southern Oscillation and Global Precipitation”. Geography Compass, 2(3), 2008, 600-619.
[41] Dong, B., Sutton, R. T., & Scaife, A. A. “Multidecadal modulation of El Niño–Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures”. Geophysical Research Letters, 33(8), 2006.
[42] Trenberth, K. E. “El Niño Southern Oscillation (ENSO)”. In J. K. Cochran, H. J. Bokuniewicz, & P. L. Yager (Eds.), Encyclopedia of Ocean Sciences (Third Edition), Academic Press, 2019, 420-432.
[43] Hsu, P.-C., Ho, C.-R., Liang, S.-J., & Kuo, N.-J. “Impacts of Two Types of El Niño and La Niña Events on Typhoon Activity”. Advances in Meteorology, 2013, 632470.
[44] Qin, G., Johnson, C., Zhang, Y., Zhang, H., Yin, J., Miller, G., Turingan, R. G., Guisbert, E., & Lin, Q. “Temperature-induced physiological stress and reproductive characteristics of the migratory seahorse Hippocampus erectus during a thermal stress simulation”. Biology Open, 7(6), 2018.
[45] Sandersfeld, T., Mark, F. C., & Knust, R. “Temperature-dependent metabolism in Antarctic fish: Do habitat temperature conditions affect thermal tolerance ranges?” Polar Biology, 40(1), 2017, 141-149.
[46] Hughes, T. P., Kerry, J. T., Baird, A. H., Connolly, S. R., Dietzel, A., Eakin, C. M., ... & Torda, G. “Global warming transforms coral reef assemblages”. Nature, 556(7702), 2018, 492-496.
[47] Arora, M., Gujrati, A., Chaudhury, N. R., Chauhan, P., & Patel, R. C. “Assessment of coral reef thermal stress over India based on remotely sensed sea surface temperature”. Geocarto International, 36(7), 2021, 740-757.
[48] Bonesso, J. L., Leggat, W., & Ainsworth, T. D. “Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury”. PeerJ, 5, 2017, e3719.
[49] De, K., Nanajkar, M., Arora, M., Nithyanandan, M., Mote, S., & Ingole, B. “Application of remotely sensed sea surface temperature for assessment of recurrent coral bleaching (2014–2019) impact on a marginal coral ecosystem”. Geocarto International, 37(15), 2022, 4483-4508.
[50] Foster, N. L., & Attrill, M. J. “Chapter 20 - Changes in coral reef ecosystems as an indication of climate and global change”. In T. M. Letcher (Ed.), Climate Change (Third Edition), Elsevier, 2021, 427-443.
[51] Gleeson, M. W., & Strong, A. E. “Applying MCSST to coral reef bleaching”. Advances in Space Research, 16(10), 1995, 151-154.
[52] Hsu, P.-C., Macagga, R. A. T., Lu, C.-Y., & Lo, D. Y.-J. “Investigation of the Kuroshio-coastal current interaction and marine heatwave trends in the coral habitats of Northeastern Taiwan”. Regional Studies in Marine Science, 71, 2024, 103431.
[53] Lough, J. M. “1997–98: Unprecedented thermal stress to coral reefs?” Geophysical Research Letters, 27(23), 2000, 3901-3904.
[54] Krishnaveni, N., Shenbaga Devi, A., & Santhanam, P. “A Method of Analysis of Pigments in Phytoplankton”. In P. Santhanam, A. Begum, & P. Pachiappan (Eds.), Basic and Applied Phytoplankton Biology, Springer Singapore, 2019, 221-227.
[55] Jia, J., Gao, Y., Sun, K., Lu, Y., Wang, J., & Shi, K. “Phytoplankton community composition, carbon sequestration, and associated regulatory mechanisms in a floodplain lake system”. Environmental Pollution, 306, 2022, 119411.
[56] Maraóón, E., Cermeóo, P., Rodríguez, J., Zubkov, M. V., & Harris, R. P. “Scaling of phytoplankton photosynthesis and cell size in the ocean”. Limnology and Oceanography, 52(5), 2007, 2190-2198.
[57] Medlin, L., & Simon, N. “Phylogenetic Analysis of Marine Phytoplankton”. In K. E. Cooksey (Ed.), Molecular Approaches to the Study of the Ocean, Springer Netherlands, 1998, 161-186.
[58] Poulton, A. J., Adey, T. R., Balch, W. M., & Holligan, P. M. “Relating coccolithophore calcification rates to phytoplankton community dynamics: Regional differences and implications for carbon export”. Deep Sea Research Part II: Topical Studies in Oceanography, 54(5), 2007, 538-557.
[59] Prézelin, B. B., & Ley, A. C. “Photosynthesis and chlorophyll a fluorescence rhythms of marine phytoplankton”. Marine Biology, 55(4), 1980, 295-307.
[60] Schuback, N., & Tortell, P. D. “Diurnal regulation of photosynthetic light absorption, electron transport and carbon fixation in two contrasting oceanic environments”. Biogeosciences, 16(7), 2019, 1381-1399.
[61] Wang, X., Yin, Z., Chen, J., & Liu, J. “Phytoplankton Carbon Utilization Strategies and Effects on Carbon Fixation”. Water, 15(11), 2023, 2137.
[62] Agarwal, V., Chávez-Casillas, J., Inomura, K., & Mouw, C. B. “Patterns in the temporal complexity of global chlorophyll concentration”. Nature Communications, 15(1), 2024, 1522.
[63] Gobler, C. J. “Climate Change and Harmful Algal Blooms: Insights and perspective”. Harmful Algae, 91, 2020, 101731.
[64] Laliberté, J., & Larouche, P. “Chlorophyll-a concentration climatology, phenology, and trends in the optically complex waters of the St. Lawrence Estuary and Gulf”. Journal of Marine Systems, 238, 2023, 103830.
[65] Lin, Q., Zhang, K., McGowan, S., Huang, S., Xue, Q., Capo, E., Zhang, C., Zhao, C., & Shen, J. “Characterization of lacustrine harmful algal blooms using multiple biomarkers: Historical processes, driving synergy, and ecological shifts”. Water Research, 235, 2023, 119916.
[66] McGowan, S. “Chapter 2 - Harmful algal blooms”. In R. Sivanpillai & J. F. Shroder (Eds.), Biological and Environmental Hazards, Risks, and Disasters (Second Edition). Elsevier. 2023, 9-53.
[67] McLean, T. I., & Sinclair, G. A. “Harmful Algal Blooms”. In E. A. Laws (Ed.), Environmental Toxicology: Selected Entries from the Encyclopedia of Sustainability Science and Technology, Springer New York, 2013, 319-360.
[68] Tsikoti, C., & Genitsaris, S. “Review of Harmful Algal Blooms in the Coastal Mediterranean Sea, with a Focus on Greek Waters”. Diversity, 13(8), 2021, 396.
[69] Zhang, P., Peng, C., Zhang, J., Zhang, J., Chen, J., & Zhao, H. ”Long-Term Harmful Algal Blooms and Nutrients Patterns Affected by Climate Change and Anthropogenic Pressures in the Zhanjiang Bay, China”. Frontiers in Marine Science, 2022, 9.
[70] Banerjee, K., & Paul, R. “Role of abiotic factors in enhancing the capacity of mangroves in reducing ocean acidification”. Ecotoxicology, 31(7), 2022, 1169-1188.
[71] Ruardij, P., Van Haren, H., & Ridderinkhof, H. “The impact of thermal stratification on phytoplankton and nutrient dynamics in shelf seas: a model study”. Journal of Sea Research, 38(3), 1997, 311-331.
[72] Scheen, J., & Stocker, T. F. “Effect of changing ocean circulation on deep ocean temperature in the last millennium”. Earth Syst. Dynam., 11(4), 2020, 925-951.
[73] Senjyu, T., & Sudo, H. “The upper portion of the Japan Sea Proper Water; Its source and circulation as deduced from isopycnal analysis”. Journal of Oceanography, 50, 1994, 663-690.
[74] Thomsen, S., Kanzow, T., Krahmann, G., Greatbatch, R. J., Dengler, M., & Lavik, G. “The formation of a subsurface anticyclonic eddy in the Peru‐Chile Undercurrent and its impact on the near‐coastal salinity, oxygen, and nutrient distributions”. Journal of Geophysical Research, 121, 2016, 476-501.
[75] Thorpe, S. A., Hutt, P. K., & Soulsby, R. L. “The effect of horizontal gradients on thermohaline convection”. Journal of Fluid Mechanics, 38, 1969, 375 - 400.
[76] Chen, C.-T. A., Liu, C.-T., Chuang, W. S., Yang, Y. J., Shiah, F.-K., Tang, T. Y., & Chung, S. W. “Enhanced buoyancy and hence upwelling of subsurface Kuroshio waters after a typhoon in the southern East China Sea”. Journal of Marine Systems, 42(1), 2003, 65-79.
[77] Condie, S. A., Herzfeld, M., Margvelashvili, N., & Andrewartha, J. R. “Modeling the physical and biogeochemical response of a marine shelf system to a tropical cyclone”. Geophysical Research Letters, 36(22), 2009.
[78] Hsu, P.-C., & Ho, C.-R. “Typhoon-induced ocean subsurface variations from glider data in the Kuroshio region adjacent to Taiwan”. Journal of Oceanography, 75(1), 2019, 1-21.
[79] Huete-Ortega, M., Calvo-Díaz, A., Graña, R., Mouriño-Carballido, B., & Marañón, E. “Effect of environmental forcing on the biomass, production and growth rate of size-fractionated phytoplankton in the central Atlantic Ocean”. Journal of Marine Systems, 88(2), 2011, 203-213.
[80] Lin, I.-I. “Typhoon-induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean”. Journal of Geophysical Research: Oceans, 117(C3), 2012.
[81] Pei, Y., Zhang, R., & Chen, D. “Upper ocean response to tropical cyclone wind forcing: A case study of typhoon Rammasun (2008)”. Science China Earth Sciences, 58(9), 2015, 1623-1632.
[82] Zhang, H. “Modulation of Upper Ocean Vertical Temperature Structure and Heat Content by a Fast-Moving Tropical Cyclone”. Journal of Physical Oceanography, 53(2), 2023, 493-508.
[83] Guo, S., Feng, Y., Wang, L., Dai, M., Liu, Z., Bai, Y., & Sun, J. “Seasonal variation in the phytoplankton community of a continental-shelf sea: the East China Sea. Marine Ecology Progress Series, 516, 2014, 103-126.
[84] Lin, I., Liu, W. T., Wu, C.-C., Wong, G. T. F., Hu, C., Chen, Z., Liang, W.-D., Yang, Y., & Liu, K.-K. “New evidence for enhanced ocean primary production triggered by tropical cyclone”. Geophysical Research Letters, 30(13), 2003.
[85] Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I., Kossin, J. P., Srivastava, A. K., & Sugi, M. “Tropical cyclones and climate change”. Nature Geoscience, 3(3), 2010, 157-163.
[86] Mei, W., Xie, S.-P., Primeau, F., McWilliams, J. C., & Pasquero, C. “Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures”. Science Advances, 1(4), 2015, e1500014.
[87] Balaguru, K., Foltz, G. R., & Leung, L. R.”Increasing Magnitude of Hurricane Rapid Intensification in the Central and Eastern Tropical Atlantic”. Geophysical Research Letters, 45(9), 2018, 4238-4247.
[88] Cheng, L., Zhu, J., Abraham, J., Trenberth, K. E., Fasullo, J. T., Zhang, B., Yu, F., Wan, L., Chen, X., & Song, X. “2018 Continues Record Global Ocean Warming”. Advances in Atmospheric Sciences, 36(3), 2019, 249-252.
[89] Ye, H., Sheng, J., Tang, D., Siswanto, E., Ali Kalhoro, M., & Sui, Y. “Storm-induced changes in pCO2 at the sea surface over the northern South China Sea during Typhoon Wutip”. Journal of Geophysical Research: Oceans, 122(6), 2017, 4761-4778.
[90] Zhao, H., & Wang, C. “Interdecadal modulation on the relationship between ENSO and typhoon activity during the late season in the western North Pacific”. Climate Dynamics, 47(1), 2016, 315-328.
[91] Emanuel, K. A. “Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century”. Proceedings of the National Academy of Sciences, 110(30), 2013, 12219-12224.
[92] Kossin, J. P., Knapp, K. R., Olander, T. L., & Velden, C. S. “Global increase in major tropical cyclone exceedance probability over the past four decades”. Proceedings of the National Academy of Sciences, 117(22), 2020, 11975-11980.
[93] Menkes, C. E., Lengaigne, M., Lévy, M., Ethé, C., Bopp, L., Aumont, O., Vincent, E., Vialard, J., & Jullien, S. “Global impact of tropical cyclones on primary production”. Global Biogeochemical Cycles, 30(5), 2016, 767-786.
[94] Pan, J., Huang, L., Devlin, A. T., & Lin, H. “Quantification of Typhoon-Induced Phytoplankton Blooms Using Satellite Multi-Sensor Data”. Remote Sensing, 10(2), 2018, 318.
[95] Liu, X., Wang, M., & Shi, W. “A study of a Hurricane Katrina–induced phytoplankton bloom using satellite observations and model simulations”. Journal of Geophysical Research: Oceans, 114(C3), 2009.
[96] Shropshire, T., Li, Y., & He, R. “Storm impact on sea surface temperature and chlorophyll a in the Gulf of Mexico and Sargasso Sea based on daily cloud-free satellite data reconstructions”. Geophysical Research Letters, 43(23), 2016, 12- 199.
[97] Huang, S.-M., & Oey, L.-Y. ”Right-side cooling and phytoplankton bloom in the wake of a tropical cyclone”. Journal of Geophysical Research: Oceans, 120(8), 2015, 5735-5748.
[98] Bacmeister, J. T., Reed, K. A., Hannay, C., Lawrence, P., Bates, S., Truesdale, J. E., Rosenbloom, N., & Levy, M. “Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model”. Climatic Change, 146(3), 2018, 547-560.
[99] Tuleya, R. E., Bender, M., Knutson, T. R., Sirutis, J. J., Thomas, B., & Ginis, I. “Impact of Upper-Tropospheric Temperature Anomalies and Vertical Wind Shear on Tropical Cyclone Evolution Using an Idealized Version of the Operational GFDL Hurricane Model”. Journal of the Atmospheric Sciences, 73(10), 2016, 3803-3820.
[100] Moon, I.-J., Kim, S.-H., & Chan, J. C. L. “Climate change and tropical cyclone trend”. Nature, 570(7759), 2019, E3-E5.
[101] Domingues, R., Goni, G., Bringas, F., Lee, S.-K., Kim, H.-S., Halliwell, G., Dong, J., Morell, J., & Pomales, L. “Upper ocean response to Hurricane Gonzalo (2014): Salinity effects revealed by targeted and sustained underwater glider observations”. Geophysical Research Letters, 42(17), 2015, 7131-7138.
[102] Goni, G., Demaria, M., Knaff, J., Sampson, C., Ginis, I., Bringas, F., Mavume, A., Lauer, C., Lin, I. I., Ali, M. M., Sandery, P., Ramos-Buarque, S., Kang, K., Mehra, A., Chassignet, E., & Halliwell, G. “Applications of Satellite-Derived Ocean Measurements to Tropical Cyclone Intensity Forecasting”. Oceanography, 22(3), 2009, 190-197.
[103] Sun, J., & Oey, L.-Y. “The Influence of the Ocean on Typhoon Nuri (2008). Monthly Weather Review, 143(11), 2015, 4493-4513.
[104] Yablonsky, R. M., & Ginis, I. “Limitation of One-Dimensional Ocean Models for Coupled Hurricane–Ocean Model Forecasts”. Monthly Weather Review, 137(12), 2009, 4410-4419.
[105] Kaore, Y., Sperandio Nascimento, E. G., Souza, N., Zucatelli, P., Kumar, P., Albuquerque, T., Romero de Moraes, M., & Moreira, D. ”Evaluation of the WRF-ARW model during an extreme rainfall event: Subtropical storm Guará”. Atmósfera, 2021, 35.
[106] Tao, W.-K., Chen, J.-P., Li, Z., Wang, C., & Zhang, C. “Impact of aerosols on convective clouds and precipitation”. Reviews of Geophysics, 50(2).
[107] D′Asaro, E. A., Black, P. G., Centurioni, L. R., Chang, Y.-T., Chen, S. S., Foster, R. C., Graber, H. C., Harr, P., Hormann, V., Lien, R.-C., Lin, I.-I., Sanford, T. B., Tang, T.-Y., & Wu, C.-C. “Impact of Typhoons on the Ocean in the Pacific”. Bulletin of the American Meteorological Society, 95(9), 2014, 1405-1418.
[108] Jaimes, B., & Shay, L. K. “Enhanced Wind-Driven Downwelling Flow in Warm Oceanic Eddy Features during the Intensification of Tropical Cyclone Isaac (2012): Observations and Theory”. Journal of Physical Oceanography, 45(6), 2015, 1667-1689.
[109] Li, M., Zhang, S., Wu, L., Lin, X., Chang, P., Danabasoglu, G., Wei, Z., Yu, X., Hu, H., Ma, X., Ma, W., Jia, D., Liu, X., Zhao, H., Mao, K., Ma, Y., Jiang, Y., Wang, X., Liu, G., & Chen, Y. “A high-resolution Asia-Pacific regional coupled prediction system with dynamically downscaling coupled data assimilation”. Science Bulletin, 65(21), 2020, 1849-1858.
[110] Peduzzi, P., Chatenoux, B., Dao, H., De Bono, A., Herold, C., Kossin, J., Mouton, F., & Nordbeck, O. “Global trends in tropical cyclone risk”. Nature Climate Change, 2(4), 2012, 289-294.
[111] Choi, Y., Ha, K.-J., & Jin, F.-F. “Seasonality and El Niño Diversity in the Relationship between ENSO and Western North Pacific Tropical Cyclone Activity”. Journal of Climate, 32(23), 2019, 8021-8045.
[112] Li, T., Chen, F., Zhang, S., Feng, X., & Zeng, W. “Possible linkage between asymmetry of atmospheric meridional circulation and tropical cyclones in the Central Pacific during El Niño years”. PLOS ONE, 16(11), 2021, e0259599.
[113] Wang, C., Wu, K., Wu, L., Zhao, H., & Cao, J. “What Caused the Unprecedented Absence of Western North Pacific Tropical Cyclones in July 2020?” Geophysical Research Letters, 48(9), 2021, e2020GL092282.
[114] Tao, L., Wu, L., Wang, Y., & Yang, J. “Influence of Tropical Indian Ocean Warming and ENSO on Tropical Cyclone Activity over the Western North Pacific”. Journal of the Meteorological Society of Japan. Ser. II, 90(1), 2012, 127-144.
[115] Zhang, W., Vecchi, G. A., Murakami, H., Villarini, G., Delworth, T. L., Yang, X., & Jia, L. “Dominant Role of Atlantic Multidecadal Oscillation in the Recent Decadal Changes in Western North Pacific Tropical Cyclone Activity”. Geophysical Research Letters, 45(1), 2018, 354-362.
[116] Yan, T., Pietrafesa, L., Gayes, P., & Bao, S. “The role of Tibetan Plateau snow cover in the 1978 and 2001 western North Pacific typhoon seasons”. J. Climatol. Wea. Forecasting, 3, 2015, 148.
[117] Lin, Y.-W., LinHo, & Chou, C. “The role of the New Guinea cross-equatorial flow in the interannual variability of the western North Pacific summer monsoon”. Environmental Research Letters, 9(4), 2014, 044003.
[118] Shi, D., Li, C., Zhu, Z., Lv, R., Chen, S., & Zhu, Y. “The Prediction Algorithm and Characteristics Analysis of Kuroshio Sea Surface Temperature Anomalies”. Advances in Meteorology, 2022, 7236527.
[119] Yamazaki, A., Watanabe, T., Tsunogai, U., Iwase, F., & Yamano, H. “A 150-year variation of the Kuroshio transport inferred from coral nitrogen isotope signature”. Paleoceanography, 31(6), 2016, 838-846.
[120] Yuan, X., & Talley, L. D. “The subarctic frontal zone in the North Pacific: Characteristics of frontal structure from climatological data and synoptic surveys”. Journal of Geophysical Research: Oceans, 101(C7), 1996, 16491-16508.
[121] Ortiz, J., Mix, A., Hostetler, S., & Kashgarian, M. “The California Current of the Last Glacial Maximum: Reconstruction at 42°N based on multiple proxies”. Paleoceanography, 12(2), 1997, 191-205.
[122] Hastenrath, S., & Greischar, L. “The monsoonal heat budget of the hydrosphere-atmosphere system in the Indian Ocean sector”. Journal of Geophysical Research: Oceans, 98(C4), 1993, 6869-6881.
[123] Yang, J., Liu, Q., Liu, Z., Wu, L., & Huang, F. “Basin mode of Indian Ocean sea surface temperature and Northern Hemisphere circumglobal teleconnection”. Geophysical Research Letters, 36(19), 2009.
[124] Chen, J.-M., Lu, F.-C., Kuo, S.-L., & Shih, C.-F. “Summer Climate Variability in Taiwan and Associated Large-Scale Processes”. Journal of the Meteorological Society of Japan. Ser. II, 83(4), 2005, 499-516.
[125] Chen, H.-F., Wen, S.-Y., Song, S.-R., Yang, T.-N., Lee, T.-Q., Lin, S.-F., Hsu, S.-C., Wei, K.-Y., Chang, P.-Y., & Yu, P.-S. “Strengthening of paleo-typhoon and autumn rainfall in Taiwan corresponding to the Southern Oscillation at late Holocene”. Journal of Quaternary Science, 27(9), 2012, 964-972.
[126] Teng, H.-F., Done, J. M., & Kuo, Y.-H. “Landfalling tropical cyclone characteristics and their multi-timescale variability connected to monsoon and easterly formation environments over the western North Pacific”. Quarterly Journal of the Royal Meteorological Society, 147(738), 2021, 2953-2977.
[127] Siswanto, E., Ishizaka, J., Yokouchi, K., Tanaka, K., & Tan, C. K. “Estimation of interannual and interdecadal variations of typhoon-induced primary production: A case study for the outer shelf of the East China Sea”. Geophysical Research Letters, 34(3), 2007.
[128] Hu, D., Wang, F., Sprintall, J., Wu, L., Riser, S., Cravatte, S., Gordon, A., Zhang, L., Chen, D., Zhou, H., Ando, K., Wang, J., Lee, J.-H., Hu, S., Wang, J., Zhang, D., Feng, J., Liu, L., Villanoy, C., . . . Ma, Y. “Review on observational studies of western tropical Pacific Ocean circulation and climate”. Journal of Oceanology and Limnology, 38(4), 2020, 906-929.
[129] Kang, N.-Y., & Elsner, J. B. “Climate Mechanism for Stronger Typhoons in a Warmer World”. Journal of Climate, 29(3), 2016, 1051-1057.
[130] Clements, B. W., & Casani, J. A. P. “14 - Hurricanes, Typhoons, and Tropical Cyclones”. In B. W. Clements & J. A. P. Casani (Eds.), Disasters and Public Health (Second Edition), Butterworth-Heinemann, 2016, 331-355.
[131] Huang, L. W., & Ge, Y. J. “Numerical Investigation of the Upper Ocean Response to the Typhoon Winnie (1997) Using an Air-Sea Coupled Model”. Advanced Materials Research, 726-731, 2013, 3443-3446.
[132] Wang, X., Wang, X., & Chu, P. C. “Air-sea interactions during rapid intensification of typhoon Fengshen (2008)”. Deep Sea Research Part I: Oceanographic Research Papers, 140, 2018, 63-77.
[133] Fujiwara, K., Kawamura, R., & Kawano, T. “Remote Thermodynamic Impact of the Kuroshio Current on a Developing Tropical Cyclone Over the Western North Pacific in Boreal Fall”. Journal of Geophysical Research: Atmospheres, 125(1), 2020, e2019JD031356.
[134] Yaremchuk, M., & Qu, T. “Seasonal Variability of the Large-Scale Currents near the Coast of the Philippines”. Journal of Physical Oceanography, 34(4), 2004, 844-855.
[135] Meijing, L. I. N., Ke, F. A. N., & Huijun, W. “An investigation into the climatic characteris tics of vertical shear of zonal wind in the western North Pacific”. Acta Meteorologica Sinica, 3, 2010, 309-314.
[136] Zeng, Z., Wang, Y., & Wu, C.-C. “Environmental Dynamical Control of Tropical Cyclone Intensity—An Observational Study”. Monthly Weather Review, 135(1), 2007, 38-59.
[137] Pun, I.-F., Lin, I.-I., & Lo, M.-H. “Recent increase in high tropical cyclone heat potential area in the Western North Pacific Ocean”. Geophysical Research Letters, 40(17), 2013, 4680-4684.
[138] Teng, H.-F., Lee, C.-S., & Hsu, H.-H. “Influence of ENSO on formation of tropical cloud clusters and their development into tropical cyclones in the western North Pacific”. Geophysical Research Letters, 41(24), 2014, 9120-9126.
[139] Ritchie, E. A., Wood, K. M., Gutzler, D. S., & White, S. R. “The Influence of Eastern Pacific Tropical Cyclone Remnants on the Southwestern United States”. Monthly Weather Review, 139(1), 2011, 192-210.
[140] Zhang, W., Leung, Y., & Fraedrich, K. “Different El Niño types and intense typhoons in the Western North Pacific”. Climate Dynamics, 44(11), 2015, 2965-2977.
[141] Kittinger, J. N. “Human Dimensions of Small-Scale and Traditional Fisheries in the Asia-Pacific Region”. Pacific Science, 67(3), 315-325, 2013, 311.
[142] Batchelder, H. P., Lessard, E. J., Strub, P. T., & Weingartner, T. J. “US GLOBEC biological and physical studies of plankton, fish and higher trophic level production, distribution, and variability in the northeast Pacific”. Deep Sea Research Part II: Topical Studies in Oceanography, 52(1), 2005, 1-4.
[143] Lin, I. I., Liu, W. T. L., Wu, C.-C., Chiang, J., & Sui, C.-H. “Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling”. Geophysical Research Letters, 30, 2003, 31-31.
[144] Wang, Y. “Composite of Typhoon-Induced Sea Surface Temperature and Chlorophyll-a Responses in the South China Sea”. Journal of Geophysical Research: Oceans, 125(10), 2020, e2020JC016243.
[145] Aryastana, P., Liu, C.-Y., Jong-Dao Jou, B., Cayanan, E., Punay, J. P., & Chen, Y.-N. “Assessment of Satellite Precipitation Data Sets for High Variability and Rapid Evolution of Typhoon Precipitation Events in the Philippines”. Earth and Space Science, 9(9), 2022, e2022EA002382.
[146] Liu, F., Hon, K.-k., Zhang, H., & Ming, J. “An observational study of Typhoon Khanun (2017) during intensification over the South China Sea”. Meteorological Applications, 29(6), 2022, e2100.
[147] Schreck, C. J., Knapp, K. R., & Kossin, J. P. “The Impact of Best Track Discrepancies on Global Tropical Cyclone Climatologies using IBTrACS”. Monthly Weather Review, 142(10), 3881-3899.
[148] Magee, A. D., Verdon-Kidd, D. C., Diamond, H. J., & Kiem, A. S. “Influence of ENSO, ENSO Modoki, and the IPO on tropical cyclogenesis: a spatial analysis of the southwest Pacific region”. International Journal of Climatology, 37(S1), 2017m 1118-1137.
[149] Ren, D. “The impacts of satellite remotely sensed winds and total precipitable vapour in WRF tropical cyclone track forecasts”. Advances in Meteorology, 2016.
[150] Chen, D., Gao, Y., & Wang, H. “Why Was the August Rainfall Pattern in the East Asia–Pacific Ocean Region in 2016 Different from That in 1998 under a Similar Preceding El Niño Background?” Journal of Climate, 32(18), 2019, 5785-5797.
[151] Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., & Neumann, C. J. “The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying Tropical Cyclone Data”. Bulletin of the American Meteorological Society, 91(3), 2010, 363-376.
[152] Leijnse, T. W. B., Giardino, A., Nederhoff, K., & Caires, S. “Generating reliable estimates of tropical-cyclone-induced coastal hazards along the Bay of Bengal for current and future climates using synthetic tracks”. Nat. Hazards Earth Syst. Sci., 22(6), 2022, 1863-1891.
[153] Singh, O. P. “Recent Trends in Tropical Cyclone Activity in the North Indian Ocean”. In Y. Charabi (Ed.), Indian Ocean Tropical Cyclones and Climate Change, Springer Netherlands. 2010, 51-54.
[154] Sun, J., Oey, L., Xu, F. H., & Lin, Y. C. “Sea level rise, surface warming, and the weakened buffering ability of South China Sea to strong typhoons in recent decades”. Scientific Reports, 7(1), 2017, 7418.
[155] Tran, T. X. “Typhoon and agricultural production portfolioEmpirical evidence for a developing economy”. International Journal of Disaster Risk Reduction, 75, 2022, 102938.
[156] Knapp, K. R., Knaff, J. A., Sampson, C. R., Riggio, G. M., & Schnapp, A. D. “A Pressure-Based Analysis of the Historical Western North Pacific Tropical Cyclone Intensity Record”. Monthly Weather Review, 141(8), 2013, 2611-2631.
[157] Swapna, P., Sreeraj, P., Sandeep, N., Jyoti, J., Krishnan, R., Prajeesh, A. G., Ayantika, D. C., & Manmeet, S. “Increasing Frequency of Extremely Severe Cyclonic Storms in the North Indian Ocean by Anthropogenic Warming and Southwest Monsoon Weakening”. Geophysical Research Letters, 49(3), 2022, e2021GL094650.
[158] Zhang, L., & Oey, L. “An Observational Analysis of Ocean Surface Waves in Tropical Cyclones in the Western North Pacific Ocean”. Journal of Geophysical Research: Oceans, 124(1), 2019, 184-195.
[159] Xing, M., Yao, F., Zhang, J., Meng, X., Jiang, L., & Bao, Y. “Data reconstruction of daily MODIS chlorophyll-a concentration and spatio-temporal variations in the Northwestern Pacific”. Science of The Total Environment, 843, 2022, 156981.
[160] Kurihara, Y., Murakami, H., & Kachi, M. “Sea surface temperature from the new Japanese geostationary meteorological Himawari-8 satellite”. Geophysical Research Letters, 43(3), 2016, 1234-1240.
[161] Murakami H."Ocean color estimation by Himawari-8/AHI", Proc. SPIE 9878, Remote Sensing of the Oceans and Inland Waters: Techniques, Applications, and Challenges, 2016, 987810.
[162] Lin, J.-Y., Ho, H., & Zheng, Z.-W. “Improved Understanding of Typhoon-Induced Immediate Chlorophyll-A Response Using Advanced Himawari Imager (AHI) Onboard Himawari-8”. Remote Sensing, 14(23), 2022, 6055.
[163] Liu, Y., Tang, D., & Evgeny, M. “Chlorophyll Concentration Response to the Typhoon Wind-Pump Induced Upper Ocean Processes Considering Air–Sea Heat Exchange”. Remote Sensing, 11(15), 2019, 1825.
[164] Ma, C., Zhao, J., Ai, B., Sun, S., Zhang, G., Huang, W., & Wang, G. “Assessing responses of phytoplankton to consecutive typhoons by combining Argo”, remote sensing and numerical simulation data. Science of The Total Environment, 790, 2021, 148086.
[165] Sun, L., Yang, Y., Xian, T., Lu, Z., & Fu, Y. ‘Strong enhancement of chlorophyll a concentration by a weak typhoon”. Marine Ecology Progress Series, 404, 2010, 39-50.
[166] Wang, T., Liu, G., Gao, L., Zhu, L., & Li, D. “Biological responses to nine powerful typhoons in the East China Sea”. Regional Environmental Change, 17(2), 2017, 465-476.
[167] Zhao, H., Shao, J., Han, G., Yang, D., & Lv, J. “Influence of Typhoon Matsa on Phytoplankton Chlorophyll-a off East China”. PLOS ONE, 10(9), 2015, e0137863.
[168] Liu, M., Liu, X., Ma, A., Li, T., & Du, Z. “Spatio-temporal stability and abnormality of chlorophyll-a in the Northern South China Sea during 2002–2012 from MODIS images using wavelet analysis”. Continental Shelf Research, 75, 2014, 15-27.
[169] Picado, A., Alvarez, I., Vaz, N., & Dias, J. M. “Chlorophyll concentration along the northwestern coast of the Iberian Peninsula vs. atmosphere-ocean-land conditions”. Journal of Coastal Research, 65(sp2), 2013, 2047-2052,
[170] Yokouchi, K., Takeshi, K., Matsumoto, I., Fujiwara, G., Kawamura, H., & Okuda, K. “OCTS-Derived Chlorophyll-a Concentration and Oceanic Structure in the Kuroshio Frontal Region off the Joban/Kashima Coast of Japan”. Remote Sensing of Environment, 73(2), 2000, 188-197.
[171] Lee, J.-H., Moon, J.-H., & Kim, T. “Typhoon-Triggered Phytoplankton Bloom and Associated Upper-Ocean Conditions in the Northwestern Pacific: Evidence from Satellite Remote Sensing, Argo Profile, and an Ocean Circulation Model”. Journal of Marine Science and Engineering, 8(10), 2020, 788.
[172] Wang, X., Wang, X., & You, Z.-J. “Variations of chlorophyll-a and particulate organic carbon in the Yellow-Bohai Sea: in response to the Typhoon Lekima event”. Geoscience Letters, 8(1), 2021, 30.
[173] Xu, W., Jiang, H., & Kang, X. “Rainfall asymmetries of tropical cyclones prior to, during, and after making landfall in South China and Southeast United States”. Atmospheric Research, 139, 2014, 18-26.
[174] Barbedo, L., Bélanger, S., Lukovich, J. V., Myers, P. G., & Tremblay, J.-É. “Atmospheric forcing and photo-acclimation of phytoplankton fall blooms in Hudson Bay”. Elementa: Science of the Anthropocene, 10(1), 2022.
[175] Buchan, A., LeCleir, G. R., Gulvik, C. A., & González, J. M. “Master recyclers: features and functions of bacteria associated with phytoplankton blooms”. Nature Reviews Microbiology, 12(10), 2014, 686-698.
[176] Cloern, J. E. “Phytoplankton bloom dynamics in coastal ecosystems: A review with some general lessons from sustained investigation of San Francisco Bay, California”. Reviews of Geophysics, 34(2), 1996, 127-168.
[177] Anders Persson, Lars‐Anders Hansson, Christer Brönmark, Per Lundberg, B. Pettersson, L., Larry Greenberg, Anders Nilsson, P., Per Nyström, Pia Romare, & Lars Tranvik. “Effects of Enrichment on Simple Aquatic Food Webs”. The American Naturalist, 157(6), 2001, 654-669.
[178] Hung, C. C., Gong, G. C., Chou, W. C., Chung, C. C., Lee, M. A., Chang, Y., Chen, H. Y., Huang, S. J., Yang, Y., Yang, W. R., Chung, W. C., Li, S. L., & Laws, E. “The effect of typhoon on particulate organic carbon flux in the southern East China Sea”. Biogeosciences, 7(10), 2010, 3007-3018.
[179] Cavan, E. L., Trimmer, M., Shelley, F., & Sanders, R. “Remineralization of particulate organic carbon in an ocean oxygen minimum zone”. Nature Communications, 8(1), 2017, 14847.
[180] Kwon, E. Y., Primeau, F., & Sarmiento, J. L. “The impact of remineralization depth on the air–sea carbon balance”. Nature Geoscience, 2(9), 2009, 630-635.
[181] Fuhrman, J. A., & Capone, D. G. “Possible biogeochemical consequences of ocean fertilization”. Limnology and Oceanography, 36(8), 1991, 1951-1959.
[182] Huttunen, J. T., Alm, J., Liikanen, A., Juutinen, S., Larmola, T., Hammar, T., Silvola, J., & Martikainen, P. J. “Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions”. Chemosphere, 52(3), 2003, 609-621.
[183] Kotelnikova, S. “Microbial production and oxidation of methane in deep subsurface”. Earth-Science Reviews, 58(3), 2002, 367-395.
[184] Schippers, P., Lürling, M., & Scheffer, M. ‘Increase of atmospheric CO2 promotes phytoplankton productivity”. Ecology Letters, 7(6), 2004, 446-451.
[185] Choi, Y., Ha, K.-J., Ho, C.-H., & Chung, C. E. “Interdecadal change in typhoon genesis condition over the western North Pacific”. Climate Dynamics, 45(11), 2015, 3243-3255.
[186] Ma, Z., Zhang, Y., Wu, R., & Na, R. “Statistical Characteristics of the Response of Sea Surface Temperatures to Westward Typhoons in the South China Sea”. Remote Sensing, 13(5), 2021, 916.
[187] Hickey, B. M., & Banas, N. S. ”Why is the northern end of the California Current System so productive?” Oceanography, 21(4), 2008, 90-107.
[188] Simpson, J. H., & Sharples, J. ”Introduction to the Physical and Biological Oceanography of Shelf Seas. Cambridge University Press. 2012.
[189] Jorgensen, B. B. “Eutrophication in coastal marine ecosystems”. Coastal and estuarine studies., 1996.
[190] Paerl, H. W., Valdes, L. M., Pinckney, J. L., Piehler, M. F., Dyble, J., & Moisander, P. H. “Phytoplankton Photopigments as Indicators of Estuarine and Coastal Eutrophication”. BioScience, 53(10), 2003, 953-964.
[191] McGlathery, K. J., Sundbäck, K., & Anderson, I. C. “The Importance Of Primary Producers For Benthic Nitrogen And Phosphorus Cycling”. In S. L. Nielsen, G. T. Banta, & M. F. Pedersen (Eds.), Estuarine Nutrient Cycling: The Influence of Primary Producers: The Fate of Nutrients and Biomass, Springer Netherlands , 2004, 231-261.
[192] Babin, S. M., Carton, J. A., Dickey, T. D., & Wiggert, J. D. “Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert”. Journal of Geophysical Research: Oceans, 109(C3), 2004.
[193] Zheng, G., & Tang, D. “Offshore and nearshore chlorophyll increases induced by typhoon winds and subsequent terrestrial rainwater runoff”. Marine Ecology-progress Series, 333, 2007, 61-74.
[194] Emanuel, K. “Increasing destructiveness of tropical cyclones over the past 30 years”. Nature, 436(7051), 2005, 686-688.
[195] Webster, P. J., Holland, G. J., Curry, J. A., & Chang, H.-R. “Changes in Tropical Cyclone Number, Duration, and Intensity in a Warming Environment”. Science, 309(5742), 2005, 1844-1846.
[196] Johnson, G. C., McPhaden, M. J., & Firing, E. “Equatorial Pacific Ocean Horizontal Velocity, Divergence, and Upwelling”. Journal of Physical Oceanography, 31(3), 2001, 839-849.
[197] McPhaden, M. J. “Genesis and Evolution of the 1997-98 El Niño”. Science, 283(5404), 1999, 950-954.
指導教授 許伯駿(Hsu Po-Chun) 審核日期 2024-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明