博碩士論文 109521143 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:77 、訪客IP:3.145.199.225
姓名 蔡旻哲(Min-Che Tsai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 一種可動態重新配置的4:2近似壓縮器用於補償老化
(A Dynamic Reconfigurable 4:2 Compressor for Aging Compensation by Approximation)
相關論文
★ 晶圓圖之網格及稀疏缺陷樣態辨識★ 晶圓圖提取特徵參數錯誤樣態分析
★ 使用聚類過濾策略和 CNN 計算識別晶圓圖瑕疵樣態★ 新建晶圓圖相似性門檻以強化相似程度辨別能力
★ 一個可靠的靜態隨機存取記憶體內運算結構: 設計指南與耐老化策略研究★ 一個高效的老化偵測器部屬策略: 基於生成對抗網路的設計方法
★ 考慮電壓衰退和繞線影響以優化電路時序之電源供應網絡精煉策略★ 適用於提高自旋轉移力矩式磁阻隨機存取記憶體矩陣可靠度之老化偵測與緩解架構設計
★ 8T 靜態隨機存取記憶體之內積運算引擎的老化威脅緩解策略: 從架構及運算角度來提出解決的方法★ 用於響應穩定性的老化感知平行掃描鏈PUF設計
★ 8T靜態隨機存取記憶體運算的老化檢測和容忍機制:適用於邏輯和 MAC 運算的應用★ 使用擺置後的設計特徵及極限梯度提升演算法預測繞線後的繞線需求
★ 基於強化學習的晶片佈局規劃的卷積神經網路與圖神經網路融合架構★ 用於佈線後階段電壓降優化的強化學習框架
★ 多核心系統的老化與瞬態錯誤感知任務部署策略:壽命延長且節能的框架★ 基於圖神經網絡(GNN)的內部節點控制(INC)和輸入向量控制(IVC)協同優化用於老化緩解
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 機器學習 (machine learning, ML) 是人工智慧 (artificial intelligence, AI)的一種,透過大量的資料跟經驗來從中反覆學習並且找到分類規則或是訓練模型,在之後輸入新的資料時可以透過規則或模型進行預測。現今機器學習在各個領域都在快速進展,針對機器學習的加速器也被大量研究,這些加速器通常處在長時間的運算,加速老化效應的發生,老化會造成計算延遲增加,重則會產生功能錯誤,而在機器學習中的老化會使精確度下降,在實際應用層面如自駕車以及醫療模型中出現精確度下降是不可接受的,所以處理該問題是當務之急。
機器學習需要大量乘加運算,乘法所需時間更是加法無法比擬的。現今的乘法器多由壓縮器組合而成,壓縮器的近似運算也是眾多研究的目標,因為機器學習的特性,可以犧牲一部份的精度換取時間跟功耗。而老化所造成的延遲也可透過犧牲精度來減少運算時間補償,但是目前的研究缺少針對老化而做出的優化,在本篇論文中,我們提出一個有效的可動態重新配置的4:2近似壓縮器,可以在還未老化時精確運算,在老化時透過近似運算減少運算時間用以補償老化增加的延遲。實驗結果表明,我們的方法可以保證老化10年的近似運算精確度不變。
摘要(英) Machine Learning is a subset of Artificial Intelligence (AI) that involves learning from large amounts of data and experience to identify classification rules or train models. When new data is inputted, these models can make predictions based on the learned rules. Currently, machine learning is advancing rapidly across various fields, and accelerators for machine learning are being extensively researched. These accelerators often operate for long periods, accelerating aging effects. Aging can lead to increased computational latency and can also lead to functional errors in severe cases. In machine learning, aging can cause a decrease in accuracy, which is unacceptable in practical applications such as autonomous vehicles and medical models. Therefore, addressing this issue is urgent.

Machine learning requires numerous multiply-accumulate operations, with multiplication being significantly more time-consuming than addition. Modern multipliers are often composed of compressors, and approximate computing for compressors is a major research focus. Given the characteristics of machine learning, some precision can be sacrificed for improved time and power efficiency. Aging-induced delays can also be mitigated by sacrificing precision to compensate for increased computation time. However, current research lacks optimization specifically for aging. In this paper, we propose an effective dynamically reconfigurable 4:2 approximate compressor that performs accurate computations before aging and uses approximate computations to reduce computation time and compensate for aging-induced delays. Experimental results show that our method ensures that the accuracy of approximate computations remains unchanged after 10 years of aging.
關鍵字(中) ★ 老化 關鍵字(英) ★ aging
論文目次 中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 v
表目錄 vii
一、 引言 1
1.1 壓縮器 2
1.2 老化對神經網路的影響 4
1.3 貢獻 5
二、 研究背景 7
2.1 Dadda乘法器 7
2.2 老化 10
三、 設計方法 13
3.1 近似壓縮器 13
3.2 設計流程 14
四、 實驗結果 20
4.1 實驗設置 20
4.2 實驗比對 21
五、 總結 24
參考文獻 25
參考文獻 [1] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, “Gradient-based learning applied to document recognition”, in Proc. of Proceedings of the IEEE, vol. 86, issue. 11, pp. 2278-2324, Nov. 1998
[2] A. Krizhevsky, I. Sutskever and G. E. Hinton, “Imagenet classification with deep convolutional neural networks”, Proc. Adv. Neural Inf. Process. Syst., pp. 1097-1105, 2012.
[3] K. He, et al., “Deep Residual Learning for Image Recognition”, in CVPR, 2016.
[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition”, in ICLR, 2015.
[5] C. S. Wallace, “A Suggestion for a Fast Multiplier”, IEEE Transactions on Electronic Computers ( Volume: EC-13, Issue: 1, February 1964)
[6] Luigi Dadda, “Some schemes for fast serial input multipliers”, 1983 IEEE 6th Symposium on Computer Arithmetic (ARITH)
[7] Antonio Giuseppe Maria Strollo, Ettore Napoli, Davide De Caro, Nicola Petra, Gennaro Di Meo, “Comparison and Extension of Approximate 4-2 Compressors for Low-Power Approximate Multipliers”, IEEE Transactions on Circuits and Systems I: Regular Papers ( Volume: 67, Issue: 9, September 2020)
[8] Hang Xiao, Haobo Xu, Xiaoming Chen, Yujie Wang, Yinhe Han, “Fast and High-Accuracy Approximate MAC Unit Design for CNN Computing”, IEEE Embedded Systems Letters ( Volume: 14, Issue: 3, September 2022)
[9] Haoran Pei, Xilin Yi, Hang Zhou, Yajuan He, “Design of Ultra-Low Power Consumption Approximate 4–2 Compressors Based on the Compensation Characteristic”, IEEE Transactions on Circuits and Systems II: Express Briefs ( Volume: 68, Issue: 1, January 2021)
[10] U. Anil Kumar, Sumit K. Chatterjee, Syed Ershad Ahmed, “Low-Power Compressor-Based Approximate Multipliers With Error Correcting Module”, IEEE Embedded Systems Letters ( Volume: 14, Issue: 2, June 2022)
[11] Dieter K. Schroder, Jeff A. Babcock, “Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing”, Journal of applied Physics, vol. 94, pp. 1–18, July 2003.
[12] K. Rott, H. Reisinger, S. Aresu, C. Schlünder, K. Kölpin, W. Gustin, T. Grasser, “New insights on the PBTI phenomena in SiON pMOSFETs”, Microelectron. Rel., vol. 52, nos. 9–10, pp. 1891–1894
[13] T. H. Ning, P. W. Cook, R. H. Dennard, C. M. Osburn, S. E.Schuster, and H. N. Yu, “ 1 um MOSFET VLSI technology: Part 5 Hot-electron design constraints”, IEEE J. Solid-Stare Circuits, vol.SC-14, pp. 268-275, April, 1979.
[14] B. Eitan and D. Frohman-Bentchkowsky, “Hot-electron injection into the oxide in n-channel MOS devices”, IEEE Trans. Electron Devices, vol. ED-28, pp. 328-340. 1981.
[15] Heesu Kim, Jongho Kim, Hussam Amrouch, Jörg Henkel, Andreas Gerstlauer, Kiyoung Choi, Hanmin Park, “Aging Compensation With Dynamic Computation Approximation”, IEEE Transactions on Circuits and Systems I: Regular Papers ( Volume: 67, Issue: 4, April 2020)
[16] Sami Salamin, Georgios Zervakis, Ourania Spantidi, Iraklis Anagnostopoulos, Jörg Henkel, Hussam Amrouch, “Reliability-Aware Quantization for Anti-Aging NPUs”, 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE)
[17] D. Ernst, Nam Sung Kim, S. Das; S. Pant, R. Rao, Toan Pham, C. Ziesler, D. Blaauw, T. Austin, K. Flautner, T. Mudge, “Razor: a low-power pipeline based on circuit-level timing speculation”, Proceedings. 36th Annual IEEE/ACM International Symposium on Microarchitecture, 2003. MICRO-36.
[18] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, Nam Sung Kim, K. Flautner, “Razor: circuit-level correction of timing errors for low-power operation”, IEEE Micro ( Volume: 24, Issue: 6, Nov.-Dec. 2004)
指導教授 陳聿廣(Yu-Guang Chen) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明