參考文獻 |
[1] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, “Gradient-based learning applied to document recognition”, in Proc. of Proceedings of the IEEE, vol. 86, issue. 11, pp. 2278-2324, Nov. 1998
[2] A. Krizhevsky, I. Sutskever and G. E. Hinton, “Imagenet classification with deep convolutional neural networks”, Proc. Adv. Neural Inf. Process. Syst., pp. 1097-1105, 2012.
[3] K. He, et al., “Deep Residual Learning for Image Recognition”, in CVPR, 2016.
[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition”, in ICLR, 2015.
[5] C. S. Wallace, “A Suggestion for a Fast Multiplier”, IEEE Transactions on Electronic Computers ( Volume: EC-13, Issue: 1, February 1964)
[6] Luigi Dadda, “Some schemes for fast serial input multipliers”, 1983 IEEE 6th Symposium on Computer Arithmetic (ARITH)
[7] Antonio Giuseppe Maria Strollo, Ettore Napoli, Davide De Caro, Nicola Petra, Gennaro Di Meo, “Comparison and Extension of Approximate 4-2 Compressors for Low-Power Approximate Multipliers”, IEEE Transactions on Circuits and Systems I: Regular Papers ( Volume: 67, Issue: 9, September 2020)
[8] Hang Xiao, Haobo Xu, Xiaoming Chen, Yujie Wang, Yinhe Han, “Fast and High-Accuracy Approximate MAC Unit Design for CNN Computing”, IEEE Embedded Systems Letters ( Volume: 14, Issue: 3, September 2022)
[9] Haoran Pei, Xilin Yi, Hang Zhou, Yajuan He, “Design of Ultra-Low Power Consumption Approximate 4–2 Compressors Based on the Compensation Characteristic”, IEEE Transactions on Circuits and Systems II: Express Briefs ( Volume: 68, Issue: 1, January 2021)
[10] U. Anil Kumar, Sumit K. Chatterjee, Syed Ershad Ahmed, “Low-Power Compressor-Based Approximate Multipliers With Error Correcting Module”, IEEE Embedded Systems Letters ( Volume: 14, Issue: 2, June 2022)
[11] Dieter K. Schroder, Jeff A. Babcock, “Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing”, Journal of applied Physics, vol. 94, pp. 1–18, July 2003.
[12] K. Rott, H. Reisinger, S. Aresu, C. Schlünder, K. Kölpin, W. Gustin, T. Grasser, “New insights on the PBTI phenomena in SiON pMOSFETs”, Microelectron. Rel., vol. 52, nos. 9–10, pp. 1891–1894
[13] T. H. Ning, P. W. Cook, R. H. Dennard, C. M. Osburn, S. E.Schuster, and H. N. Yu, “ 1 um MOSFET VLSI technology: Part 5 Hot-electron design constraints”, IEEE J. Solid-Stare Circuits, vol.SC-14, pp. 268-275, April, 1979.
[14] B. Eitan and D. Frohman-Bentchkowsky, “Hot-electron injection into the oxide in n-channel MOS devices”, IEEE Trans. Electron Devices, vol. ED-28, pp. 328-340. 1981.
[15] Heesu Kim, Jongho Kim, Hussam Amrouch, Jörg Henkel, Andreas Gerstlauer, Kiyoung Choi, Hanmin Park, “Aging Compensation With Dynamic Computation Approximation”, IEEE Transactions on Circuits and Systems I: Regular Papers ( Volume: 67, Issue: 4, April 2020)
[16] Sami Salamin, Georgios Zervakis, Ourania Spantidi, Iraklis Anagnostopoulos, Jörg Henkel, Hussam Amrouch, “Reliability-Aware Quantization for Anti-Aging NPUs”, 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE)
[17] D. Ernst, Nam Sung Kim, S. Das; S. Pant, R. Rao, Toan Pham, C. Ziesler, D. Blaauw, T. Austin, K. Flautner, T. Mudge, “Razor: a low-power pipeline based on circuit-level timing speculation”, Proceedings. 36th Annual IEEE/ACM International Symposium on Microarchitecture, 2003. MICRO-36.
[18] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, Nam Sung Kim, K. Flautner, “Razor: circuit-level correction of timing errors for low-power operation”, IEEE Micro ( Volume: 24, Issue: 6, Nov.-Dec. 2004) |