博碩士論文 110521007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:95 、訪客IP:18.118.12.102
姓名 詹宜庭(Yi-Ting Chan)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以單一複製延遲單元實現次諧波注入時序校正之注入式鎖相迴路
(An Injection-locked Phase-locked Loop with Single Replica Delay Cell Sub-Harmonically Injection Timing Calibration)
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 多重相位之延遲鎖定迴路倍頻器設計與分析
★ 2.5Gbps串列收發器設計★ 具低抖動與可適應式頻寬之自我偏壓鎖相迴路設計
★ 應用於串列傳輸之2.5GB/s CMOS 超取樣資料回復電路★ 全數位任意責任週期之同步映射延遲電路
★ 全數位式互補金屬氧化半導自我取樣延遲線電路用於時脈抖動量測★ 500MHz,30個相位輸出之鎖相迴路應用於三倍超取樣時脈回復系統
★ 設計於90奈米製程輸出頻率為100MHz-1GHz之具可適應性頻寬鎖相迴路★ 高解析度可變動責任週期之同步複製延遲電路
★ 奈米CMOS晶片內序列傳輸之接收器★ 奈米CMOS晶片內序列傳輸之送器
★ 基於鎖相迴路之多重相位脈波產生器★ 低能量時脈儲存元件之分析、設計與量測
★ 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器★ 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-31以後開放)
摘要(中) 鎖相迴路用於產生高品質的時脈訊號,而加入次諧波注入技術將具有抑制振盪器高頻相位雜訊的特性,但是也同時面臨若注入時序不佳將嚴重影響電路效能的問題將造成參考突波 (Reference spur)及時脈抖動 (Jitter)的惡化。因此本論文提出操作於2.4GHz以單一複製延遲單元實現次諧波注入時序校正之注入式鎖相迴路具有額外的迴路自適應校正注入時序到最佳注入位置。並複製環形振盪器中的延遲單元,在校正過程中,以此單級複製延遲單元和注入脈波進行相位比較。區隔了受到注入及進行相位比較的延遲單
元。額外耗費少量的功率消耗及硬體面積便能達到更準確的注入位置,提升電路效能。電路設計與佈局以90nm CMOS製程實現。輸出時脈頻率為2.4GHz、參考時脈訊號為150MHz。完成次諧波注入時序校正後,次諧波注入式鎖相迴的參考突波為-44.3dBc輸出相位雜訊下為-115.0dBc/Hz @ 1MHz offset;方均跟抖動為970fs;不含輸入與輸出緩衝器的電路功率消耗為7.3mW核心電路面積為0.063 mm2,晶片面積為0.912 mm2。
摘要(英) Phase-locked loop (PLL) is used to generate high-quality clock signals, and incorporating sub-harmonic injection technology will have the characteristic of suppressing high-frequency phase noise of the oscillator. However, it also faces the problem of severely affecting circuit performance if the injection timing is poor, such as degradation in metrics like Reference spur and Jitter. Therefore, this paper proposes an injection-locked phase-locked loop with single replica delay cell sub-harmonically injection timing calibration operating at 2.4GHz, featuring additional loop-adaptive calibration to optimize injection timing to the best position. It duplicates delay units within the ring oscillator, and during the calibration process, it compares phases with this single replica delay cell and injection pulse. This segregates the delay cells affected by injection and those used for phase comparison. Achieving a more accurate injection position requires only a small additional power consumption and hardware area, thereby enhancing circuit performance.
The circuit design and layout are implemented using a 90 nm CMOS process. The output clock frequency is 2.4GHz, and the reference clock signal is 150MHz. After completing the sub-harmonically injection timing calibration, the reference spur of the sub-harmonic injection-locked loop is -44.3 dBc; output phase noise is -115.0 dBc/Hz @ 1MHz offset; root mean square (RMS) jitter is 970fs; circuit power consumption without input and output buffers is 7.3 mW; core circuit area is 0.063 mm2, and the chip area is 0.912 mm2.
關鍵字(中) ★ 鎖相迴路
★ 次諧波注入技術
★ 次諧波注入式鎖相迴路
★ 注入時序校正
★ 單一複製延遲單元
★ 環形振盪器
關鍵字(英) ★ Phase-Locked Loop
★ Sub-harmonically Injection locked
★ Sub-harmonically Injection locked PLL
★ Injection Timing Calibration
★ Single Replica Delay Cell
★ Ring-based Oscillator
論文目次 摘要 vi
Abstract vii
致謝 viii
目錄 ix
圖目錄 xii
表目錄 xv
第1章 緒論 1
1.1 研究動機 1
1.2 論文架構 2
第2章 次諧波注入式鎖相迴路先前技術探討 3
2.1 鎖相迴路 (Phase-locked loop, PLL) 3
2.2 相位雜訊 (Phase Noise) 4
2.3 次諧波注入鎖定技術 5
2.3.1 倍頻延遲鎖定迴路 (Multiplying Delay-Locked Loop, MDLL) 5
2.3.2 次諧波注入式振盪器 (Injection-Locked VCO) 6
2.3.3 次諧波注入式鎖相迴路 (Sub-Harmonically Injection-Locked Phase-Locked Loop, SILPLL) 7
2.3.4 相位雜訊分析 8
2.3.5 除數限制 (Divisor Limited) 9
2.3.6 參考突波 (Reference Spur) 11
2.3.7 注入時序 (Injection Timing Issue) 12
2.4 次諧波注入時序自我校正技術 先前文獻 13
2.4.1 次諧波注入時序校正技術 (一 ) 13
2.4.2 次諧波注入時序校正技術 (二 ) 15
2.4.3 次諧波注入時序校正技術 (三 ) 17
2.5 單複製延遲單元先前文獻探討 19
2.6 先前文獻總結 20
第3章 以單一複製延遲單元實現次諧波注入時序校正之注入式鎖相迴路 21
3.1 電路架構與操作 21
3.2 鎖相迴路操作與設計鎖相迴路操作與設計 22
3.3 次諧波注入時序校正迴路操作次諧波注入時序校正迴路操作 22
3.4 單複製延遲單元的應用單複製延遲單元的應用 24
3.5 電路操作流程電路操作流程 26
3.5.1 步驟一步驟一 : 鎖相迴路鎖相迴路 26
3.5.2 步驟二步驟二 : 注入時序校正迴路注入時序校正迴路 27
3.6 次諧波注入式鎖相迴路之系統分析次諧波注入式鎖相迴路之系統分析 28
第4章 研究架構設計與實現研究架構設計與實現 30
4.1 類比式鎖相迴路子電路設計類比式鎖相迴路子電路設計 30
4.1.1 相位頻率偵測器相位頻率偵測器 (Phase Frequency Detector, PFD) 30
4.1.2 電荷幫浦電荷幫浦 (Charge Pump, CPPLL) 32
4.1.3 迴路濾波器迴路濾波器 (Loop Filter, LF) 34
4.1.4 電壓控制振盪器電壓控制振盪器 (Voltage Control Oscillator, VCO) 35
4.1.5 除頻器除頻器 (Divider, DIV) 38
4.1.6 鎖定偵測器鎖定偵測器 (Locked Detector, LD) 39
4.2 複製延遲單元次諧波注入時序自我校正迴路複製延遲單元次諧波注入時序自我校正迴路 41
4.2.1 縫隙相位偵測器縫隙相位偵測器 (Aperture Phase Detector, APD) 41
4.2.2 脈波產生器脈波產生器 (Pulse Generator, PG) 43
4.2.3 電壓控制延遲線電壓控制延遲線 (Voltage Control Delay Line, VCDL) 44
第5章 電路模擬結果電路模擬結果 46
5.1 鎖相迴路模擬結果鎖相迴路模擬結果 46
5.1.1 鎖相迴路佈局前模擬結果 (Pre-layout Simulation of PLL) 46
5.1.2 鎖相迴路佈局後模擬結果 (Post-layout Simulation of PLL) 47
5.2 次諧波注入式鎖相迴路模擬結果 49
5.2.1 次諧波注入式鎖相迴路佈局前模擬結果 (Pre-layout Simulation of SILPLL) 51
5.2.2 次諧波注入式鎖相迴路佈局後模擬結果 (Post-layout Simulation of SILPLL) 54
5.3 次諧波注入式鎖相迴路系統模擬 57
5.4 次諧波注入式鎖相迴路功率消耗 58
5.5 電路佈局 58
5.6 晶片量測環境考量 61
5.7 效能比較 64
第6章 結論與未來研究方向 66
6.1 結論 66
6.2 未來研究方向 67
參考文獻 68
參考文獻 [1] B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE Journal of Solid-State Circuits, vol. 31, no. 3, pp. 331-343, Mar. 1996.
[2] A. Hajimiri and T. H. Lee,“A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
[3] R. Farjad-Rad et al., “A Low-Power Multiplying DLL for Low-Jitter Multigigahertz Clock Generation in Highly Integrated Digital Chips,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1804–1812, Dec. 2002.
[4] S. Ye, L. Jansson, and I. Galton, “A Multiple-Crystal Interface PLL with VCO Realignment to Reduce Phase Noise,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1795–1803, Dec. 2002.
[5] J. Lee and H. Wang, “Study of Subharmonically Injection-Locked PLLs,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1539–1553, May 2009.
[6] 林則瑋 , “具快速次諧波時序自我校正機制之注入鎖定式鎖相迴路 ,” 碩士論文 , 國
立中央大學 , 2016.
[7] A. Musa, W. Deng, T. Siriburanon, M. Miyahara, K. Okada, and A. Matsuzawa, “A Compact, Low-Power and Low-Jitter Dual-loop Injection Locked PLL Using All-Digital PVT calibration,” IEEE J. Solid-State Circuit, vol. 49, no. 1, pp. 50-60, Jan. 2014.
[8] Y.-C. Huang, and S.-I. Liu, “A 2.4-GHz Subharmonically Injection-Locked PLL with Self-Calibrated Injection Timing,” IEEE J. Solid-State Circuits, vol. 48, no. 2, pp. 417-428, Feb. 2013.
[9] C.-F. Liang, and K.-J. Hsiao, “An Injection-Locked Ring PLL with Self-Aligned Injection Window,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 90-92, Feb. 2011.
[10] M. -H. Chou and S. -I. Liu, “A 2.4-GHz Area-Efficient and Fast-Locking Subharmonically Injection-Locked Type-I PLL,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 11, pp. 2474-2478, Nov. 2020.
[11] A. Musa, W. Deng, T. Siriburanon, M. Miyahara, K. Okada, and A. Matsuzawa, “A Compact, Low-Power and Low-Jitter Dual-loop Injection Locked PLL Using All-Digital PVT calibration,” IEEE J. Solid-State Circuit, vol. 49, no. 1, pp. 50-60, Jan. 2014.
[12] S. Choi, S. Yoo, Y. Lim and J. Choi, “A PVT-Robust and Low-Jitter Ring-VCO-Based Injection-Locked Clock Multiplier with a Continuous Frequency-Tracking Loop Using a Replica-Delay Cell and a Dual-Edge Phase Detector,” IEEE Journal of Solid-State Circuits, vol. 51, no. 8, pp. 1878-1889, Aug. 2016.
[13] 涂祐豪 , “具寬頻操作及自我相位校正之延遲鎖定迴路與頻率倍頻器 ,” 碩士論文 , 國立中央大學 , 2010.
[14] Yue-Fang Kuo, Ro-Min Weng and Chuan-Yu Liu, “A Fast Locking PLL With Phase Error Detector,” IEEE Conference on Electron Devices and Solid-State Circuits, pp. 423-426, Dec. 2005.
[15] D. Cai, H. Fu, J. Ren,W. Li, N. Li, H. Yu, and K. S. Yeo, “A 2.1-GHz PLL with 80 dBc/
74 dBc Reference Spur Based On Aperture-Phase Detector and Phase-To-Analog Converter, ” IEEE Asian Solid-State Circuits Conf., pp. 141-144, Nov. 2011.
[16] C.-L. Wei, T.-K. Kuan, and S.-I. Liu, “A Subharmonically Injection-Locked PLL With Calibrated Injection Pulsewidth,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 62, no. 6, pp. 548-552, Jun. 2015.
[17] M. Kim, S. Choi, T. Seong and J. Choi, “A Low-Jitter and Fractional-Resolution Injection-Locked Clock Multiplier Using a DLL-Based Real-Time PVT Calibrator with Replica-Delay Cells,” IEEE Journal of Solid-State Circuits, vol. 51, no. 2, pp. 401-411, Feb. 2016.
[18] X. Jin, W. Park, D.-S. Kang, Y. Ko, K.-W. Kwon, and J.-H. Chun, ‘‘A 4-GHz Sub-Harmonically Injection-Locked Phase-Locked Loop with Self-Calibrated Injection Timing and Pulsewidth,’’ IEEE J. Solid-State Circuits, vol. 55, no. 10, pp. 2724–2733, Oct. 2020.
[19] D. -H. Yoon et al., “A 3.2-GHz 178-fsrms Jitter Subsampling PLL/DLL-Based Injection-Locked Clock Multiplier,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 30, no. 7, pp. 915-925, Jul. 2022.
[20] S. Kumar and Y. K. Singh, “A Low-Phase-Noise Self-Aligned Sub-Harmonically Injection-Locked PLL Using Aperture Phase Detector-Based DLL Windowing Technique,” IEEE Access, vol. 11, pp. 6641-6655, Jan. 2023.
[21] D. Wang, Y. Zhao, Q. Yao, Y. Cao, B. Lian and H. Zhang, “Electrical simulation of gold bonding wire with different parameters,” 2015 16th International Conference on Electronic Packaging Technology (ICEPT), pp. 1329-133, Aug. 2015.
[22] 高曜煌 , 射頻鎖相迴路 IC設計 , 滄海書局 , 2005.
[23] 劉深淵 ,楊清淵 , 鎖相迴路 , 滄海書局 , 2006.
[24] 林郁芊 , “具自我校正注入時序與脈波寬度之多頻率次諧波注入式鎖相迴路 ,” 碩士
論文 , 國立中央大學 , 2022.
[25] 盧玟廷 , “一個操作在 2.4 GHz且可調整頻寬的次取樣鎖相迴路 ” 碩士論文 , 國立中
央大學 , 2022.
[26] 王璽華 , “具資料決策補償技術之 16 Gbps半速率時脈與資料回復電路 ” 碩士論文 , 國立中央大學 , 2022.
[27] J. Lee and H. Wang, “Study of Subharmonically Injection-Locked PLLs,” IEEE Journal of Solid-State Circuits, vol. 44, no. 5, pp. 1539-1553, May 2009.
[28] I. -T. Lee, K. -H. Zeng and S. -I. Liu, “A 4.8-GHz Dividerless Subharmonically Injection-Locked All-Digital PLL With a FOM of −252.5 dB,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 9, pp. 547-551, Sept. 2013.
[29] Z. Zhang, L. Liu, P. Feng and N. Wu, “A 2.4–3.6-GHz Wideband Subharmonically Injection-Locked PLL With Adaptive Injection Timing Alignment Technique,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 3, pp. 929-941, Mar. 2017.
[30] R. Wang and F. F. Dai, “A 0.8∼1.3 GHz multi-phase injection-locked PLL using capacitive coupled multi-ring oscillator with reference spur suppression,” 2017 IEEE Custom Integrated Circuits Conference (CICC), pp. 1-4, Jul. 2017.
[31] N. Xi, F. Lin and T. Ye, “A Low-Spur and Intrinsically Aligned IL-PLL With Self-Feedback Injection Locked RO and Pseudo-Random Injection Locked Technique, ” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 4, pp. 1358-1367, Apr. 2020.
指導教授 鄭國興(Kuo-Hsing Cheng) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明