參考文獻 |
[1] P. Doody, J. M. Lord, C. A. Greig, and A. C. Whittaker, “Frailty: patho physiology, theoretical and operational definition (s), impact, prevalence, management and prevention, in an increasingly economically developed and ageing world,” Gerontology, 2022.
[2] E. Topinkov´a, “Aging, disability and frailty,” Annals of Nutrition and Metabolism, vol. 52, no. Suppl. 1, pp. 6–11, 2008.
[3] T. Strandberg, K. Pitk¨al¨ a, and R. Tilvis, “Frailty in older people,” European geriatric medicine, vol. 2, no. 6, pp. 344–355, 2011.
[4] HPA, “The assessment of the six abilities in the elderly refers to an integrated evaluation of six capabilities in older individuals,”
[5] A. Tchalla, C. Laubarie-Mouret, N. Cardinaud, C. Gayot, M. Rebiere, N. Dumoitier, K. Rudelle, M. Druet-Cabanac, M.-L. Laroche, and S. Boyer, “Risk factors of frailty and functional disability in community dwelling older adults: a cross-sectional analysis of the freedom-lna cohort study,” BMC geriatrics, vol. 22, no. 1, pp. 1–9, 2022.
[6] L. P. Fried, C. M. Tangen, J. Walston, A. B. Newman, C. Hirsch, J. Gottdiener, T. Seeman, R. Tracy, W. J. Kop, G. Burke, et al., “Frailty in older adults: evidence for a phenotype,” The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol. 56, no. 3, pp. M146–M157, 2001.
[7] S. D. Searle, A. Mitnitski, E. A. Gahbauer, T. M. Gill, and K. Rockwood, “A standard procedure for creating a frailty index,” BMC geriatrics, vol. 8, pp. 1–10, 2008. [8] D. M. Jones, X. Song, and K. Rockwood, “Operationalizing a frailty index from a standardized comprehensive geriatric assessment,” Journal of the American Geriatrics Society, vol. 52, no. 11, pp. 1929–1933, 2004.
[9] Y.-C. Chou, H.-H. Tsou, D.-C. D. Chan, C.-J. Wen, F.-P. Lu, K.-P. Lin, M.-C. Wu, Y.-M. Chen, and J.-H. Chen, “Validation of clinical frailty scale in chinese translation,” BMC geriatrics, vol. 22, no. 1, pp. 1–9, 2022.
[10] S. Church, E. Rogers, K. Rockwood, and O. Theou, “A scoping review of the clinical frailty scale,” BMC geriatrics, vol. 20, no. 1, pp. 1–18, 2020.
[11] K. Rockwood and O. Theou, “Using the clinical frailty scale in allocat ing scarce health care resources,” Canadian Geriatrics Journal, vol. 23, no. 3, p. 210, 2020.
[12] S. Juma, M.-M. Taabazuing, and M. Montero-Odasso, “Clinical frailty scale in an acute medicine unit: a simple tool that predicts length of stay,” Canadian Geriatrics Journal, vol. 19, no. 2, p. 34, 2016.
[13] A. K. Triantafyllidis and A. Tsanas, “Applications of machine learning in real-life digital health interventions: review of the literature,” Journal of medical Internet research, vol. 21, no. 4, p. e12286, 2019.
[14] M. Chen, B. Huang, and Y. Xu, “Intelligent shoes for abnormal gait detection,” in 2008 IEEE international conference on robotics and automation, pp. 2019–2024, IEEE, 2008.
[15] J. D. Mejia-Trujillo, Y. J. Castano-Pino, A. Navarro, J. D. Arango Paredes, D. Rinc´on, J. Valderrama, B. Munoz, and J. L. Orozco, “Kinect™ and intel realsense™ d435 comparison: A preliminary study for motion analysis,” in 2019 IEEE International Conference on E-health Networking, Application & Services (HealthCom), pp. 1–4, IEEE, 2019.
[16] R. Liu, Z. Wang, S. Qiu, H. Zhao, C. Wang, X. Shi, and F. Lin, “A wearable gait analysis and recognition method for parkinson’s disease based on error state kalman filter,” IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 8, pp. 4165–4175, 2022.
[17] N. Roth, M. Ullrich, A. K¨ uderle, T. Gladow, F. Marxreiter, H. Gassner, F. Kluge, J. Klucken, and B. M. Eskofier, “Real-world stair ambulation characteristics differ between prospective fallers and non-fallers in parkinson’s disease,” IEEE journal of biomedical and health informatics, vol. 26, no. 9, pp. 4733–4742, 2022.
[18] M. Ullrich, N. Roth, A. K¨uderle, R. Richer, T. Gladow, H. Gaßner, F. Marxreiter, J. Klucken, B. M. Eskofier, and F. Kluge, “Fall risk prediction in parkinson’s disease using real-world inertial sensor gait data,” IEEE journal of biomedical and health informatics, vol. 27, no. 1, pp. 319–328, 2022.
[19] A. Apsega, L. Petrauskas, V. Alekna, K. Daunoraviciene, V. Sevcenko, A. Mastaviciute, D. Vitkus, M. Tamulaitiene, and J. Griskevicius, “Wearable sensors technology as a tool for discriminating frailty levels during instrumented gait analysis,” Applied Sciences, vol. 10, no. 23, p. 8451, 2020.
[20] M. Montero-Odasso, S. W. Muir, M. Hall, T. J. Doherty, M. Kloseck, O. Beauchet, and M. Speechley, “Gait variability is associated with frailty in community-dwelling older adults,” Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, vol. 66, no. 5, pp. 568–576, 2011.
[21] G. Akbari, M. Nikkhoo, L. Wang, C. P. Chen, D.-S. Han, Y.-H. Lin, H. B. Chen, and C.-H. Cheng, “Frailty level classification of the community elderly using microsoft kinect-based skeleton pose: A machine learning approach,” Sensors, vol. 21, no. 12, p. 4017, 2021.
[22] N. Eichler, S. Raz, A. Toledano-Shubi, D. Livne, I. Shimshoni, and H. Hel-Or, “Automatic and efficient fall risk assessment based on machine learning,” Sensors, vol. 22, no. 4, p. 1557, 2022.
[23] B. Mobasheri, S. R. K. Tabbakh, and Y. Forghani, “An approach for fall prediction based on kinematics of body key points using lstm,” International journal of environmental research and public health, vol. 19, no. 21, p. 13762, 2022.
[24] W. Zhu, C. Lan, J. Xing, W. Zeng, Y. Li, L. Shen, and X. Xie, “Co occurrence feature learning for skeleton based action recognition using regularized deep lstm networks,” in Proceedings of the AAAI conference on artificial intelligence, vol. 30, 2016.
[25] Physiopedia, “Functional reach test (frt) — physiopedia,,” 2024. [Online; accessed 23-July-2024].
[26] Physiopedia, “Tinetti test — physiopedia,,” 2023. [Online; accessed 23-July-2024].
[27] Physiopedia, “Timed up and go test (tug) — physiopedia,,” 2024. [Online; accessed 23-July-2024].
[28] Physiopedia, “Grip strength — physiopedia,,” 2024. [Online; accessed 23-July-2024].
[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., “Scikit-learn: Machine learning in python,” the Journal of machine Learning research, vol. 12, pp. 2825–2830, 2011.
[30] C.-W. Hsu, C.-C. Chang, C.-J. Lin, et al., “A practical guide to support vector classification,” 2003.
[31] Y.-Y. Song and L. Ying, “Decision tree methods: applications for classification and prediction,” Shanghai archives of psychiatry, vol. 27, no. 2, p. 130, 2015.
[32] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied logistic regression. John Wiley & Sons, 2013.
[33] L. E. Peterson, “K-nearest neighbor,” Scholarpedia, vol. 4, no. 2, p. 1883, 2009.
[34] A. A. Ibrahim, R. L. Ridwan, M. M. Muhammed, R. O. Abdulaziz, and G. A. Saheed, “Comparison of the catboost classifier with other machine learning methods,” International Journal of Advanced Computer Science and Applications, vol. 11, no. 11, 2020.
[35] B. Parhami, “Voting algorithms,” IEEE transactions on reliability, vol. 43, no. 4, pp. 617–629, 1994.
[36] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al., “{TensorFlow}: a system for {Large-Scale} machine learning,” in 12th USENIX symposium on operating systems design and implementation (OSDI 16), pp. 265–283, 2016.
[37] A. Sherstinsky, “Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm) network,” Physica D: Nonlinear Phe nomena, vol. 404, p. 132306, 2020.
[38] C. R. Harris, K. J. Millman, S. J. Van Der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 14 et al., “Array programming with numpy,” Nature, vol. 585, no. 7825, pp. 357–362, 2020.
[39] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014. |