博碩士論文 111522061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:3.128.30.46
姓名 鄭伊涵(Yi-Han Cheng)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 JSN : JPEG影像隱寫網路之設計與分析
(JSN : Design and Analysis of JPEG Steganography Network)
相關論文
★ 基於QT之跨平台無線心率分析系統實現★ 網路電話之額外訊息傳輸機制
★ 針對與運動比賽精彩畫面相關串場效果之偵測★ 植基於向量量化之視訊/影像內容驗證技術
★ 植基於串場效果偵測與內容分析之棒球比賽精華擷取系統★ 以視覺特徵擷取為基礎之影像視訊內容認證技術
★ 使用動態背景補償以偵測與追蹤移動監控畫面之前景物★ 應用於H.264/AVC視訊內容認證之適應式數位浮水印
★ 棒球比賽精華片段擷取分類系統★ 利用H.264/AVC特徵之多攝影機即時追蹤系統
★ 利用隱式型態模式之高速公路前車偵測機制★ 基於時間域與空間域特徵擷取之影片複製偵測機制
★ 結合數位浮水印與興趣區域位元率控制之車行視訊編碼★ 應用於數位智權管理之H.264/AVC視訊加解密暨數位浮水印機制
★ 基於文字與主播偵測之新聞視訊分析系統★ 植基於數位浮水印之H.264/AVC視訊內容驗證機制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-6以後開放)
摘要(中) 影像隱寫(Image Steganography)是將訊息隱藏入於影像中以進行秘密通訊,即利用載體影像做為偽裝來避免外人察覺,接收方則可由該影像中擷取秘密訊息。為了傳遞大量訊息,所隱藏的內容可同為影像,即以圖藏圖的應用。現存的影像隱寫技術雖然可將幾乎同樣大小的秘密影像嵌入於載體影像中而不產生明顯失真,並可擷取出完整秘密影像,但通常未考量傳輸影像時必要的有損壓縮,例如將影像以最常見的JPEG格式儲存及傳輸,失真壓縮可能導致影像隱寫失敗。為了避免JPEG壓縮對於秘密訊息的影響,我們提出一個符合JPEG壓縮邏輯的影像隱寫模型JSN (JPEG Steganography Network)。JSN運用可逆神經網路做為深度學習模型架構主幹,結合JPEG編碼流程,對影像施予8×8離散餘弦轉換並考量JPEG所規範的量化步階,使載體影像在嵌入秘密影像後能有效降低JPEG有損壓縮的影響。可逆神經網路的使用讓JSN在嵌入過程與擷取過程使用共同的架構與參數,除了維持載體影像與秘密影像畫質外,在嵌入後的額外量化程序能在訓練擷取網路參數的同時也能影響嵌入網路參數。我們對JSN進行廣泛測試,實驗結果證實JSN能夠取得良好的影像隱寫效果,並符合相關應用的實際需求。
摘要(英) Image Steganography is the technique of hiding messages within images for secret communication, using the carrier image as a disguise to avoid detection by outsiders. The recipient can then extract the hidden message from the stego image. To transmit a large amount of information, the hidden content can also be an image, leading to applications where images are hidden within images. Although existing image steganography techniques can embed nearly the same-sized secret image into a carrier image without significant distortion and can extract the complete secret image, they often do not account for necessary lossy compression during transmission, such as when saving and transmitting images in the commonly used JPEG format. Lossy compression can lead to the failure of image steganography.
To mitigate the impact of JPEG compression on secret messages, we propose an image steganography model called JSN (JPEG Steganography Network) that aligns with JPEG compression. JSN utilizes a reversible neural network as the backbone of the deep learning model, combined with the JPEG encoding process. It applies an 8×8 Discrete Cosine Transform (DCT) and takes account of the quantization steps specified by JPEG, ensuring that the impact of JPEG lossy compression on the stego image be reduced. The use of a reversible neural network allows JSN to use the same architecture and parameters during both the embedding and extraction processes. In addition to maintaining the quality of both the stego and secret images, the additional quantization process after embedding influences both the embedding and extraction network parameters during training.

We have conducted extensive testing on JSN, and the experimental results confirm that JSN achieves excellent image steganography performance and meets the practical needs of related applications.
關鍵字(中) ★ 資料隱藏
★ 深度學習
★ 可逆神經網路
★ JPEG
★ 離散餘弦轉換
關鍵字(英) ★ Steganography
★ Deep Learning
★ Invertible Neural Network
★ JPEG
★ Discrete Cousin Transform
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 X
1. 緒論 1
1.1. 研究背景與動機 1
1.2. 研究貢獻 3
1.3. 論文架構 4
2. 相關研究 5
2.1. 傳統影像隱寫 5
2.2. 基於深度學習的影像隱寫 6
2.3. 可逆神經網路 9
3. 提出方法 12
3.1. 模型架構 12
3.1.1. 影像信號分解 13
3.1.2. 可逆區塊 14
3.1.3. 影像量化 18
3.2. 損失函數設計 19
3.2.1. 偽裝損失 20
3.2.2. 重建損失 20
3.3. 訓練策略 21
3.3.1. 彩色影像處理 22
4. 實驗結果 24
4.1. 開發環境 24
4.2. 測試資料集 24
4.3. 評估方法 25
4.4. 實驗效果比較 27
4.4.1. 穩定性效果比較 29
4.5. 嵌入多張秘密影像 33
4.6. 消融實驗 34
4.6.1. 卷積神經網路區塊架構效果評估 35
4.6.2. 影像量化效果評估 36
4.7. 幾何攻擊 37
4.7.1. 裁剪幾何攻擊 38
4.8. 現實應用 39
4.8.1. 現實傳輸中的轉檔 39
4.9. 討論 40
5. 結論與未來展望 43
5.1. 結論 43
5.2. 未來展望 43
參考文獻 44
參考文獻 [1] J. J. M. S. C. Watkins, Dept of Electronics and U. o. S. CS, SO17 1BJ, UK, "Steganography-Messages Hidden in Bits," Multimedia Systems Coursework, 2001.
[2] C.-K. Chan and L.-M. J. P. r. Cheng, "Hiding data in images by simple LSB substitution," Pattern recognition, vol. 37, no. 3, pp. 469-474, 2004.
[3] P. Tsai, Y.-C. Hu, and H.-L. J. S. p. Yeh, "Reversible image hiding scheme using predictive coding and histogram shifting," Signal processing, vol. 89, no. 6, pp. 1129-1143, 2009.
[4] K. A. Zhang, A. Cuesta-Infante, L. Xu, and K. J. a. p. a. Veeramachaneni, "SteganoGAN: High capacity image steganography with GANs," arXiv preprint arXiv:1901.03892, 2019.
[5] J. Zhu, R. Kaplan, J. Johnson, and L. Fei-Fei, "Hidden: Hiding data with deep networks," in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 657-672.
[6] S.-P. Lu, R. Wang, T. Zhong, and P. L. Rosin, "Large-capacity image steganography based on invertible neural networks," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 10816-10825.
[7] J. Jing, X. Deng, M. Xu, J. Wang, and Z. Guan, "Hinet: Deep image hiding by invertible network," in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 4733-4742.
[8] L. Dinh, D. Krueger, and Y. J. a. p. a. Bengio, "Nice: Non-linear independent components estimation," arXiv preprint arXiv:1410.8516, 2014.
[9] S. Imaizumi and K. Ozawa, "Multibit embedding algorithm for steganography of palette-based images," in Image and Video Technology: 6th Pacific-Rim Symposium, PSIVT 2013, Guanajuato, Mexico, October 28-November 1, 2013. Proceedings 6, 2014, pp. 99-110: Springer.
[10] F. Pan, J. Li, and X. Yang, "Image steganography method based on PVD and modulus function," in 2011 International Conference on Electronics, Communications and Control (ICECC), 2011, pp. 282-284: IEEE.
[11] J. Fridrich, M. Goljan, and R. J. I. m. Du, "Detecting LSB steganography in color, and gray-scale images," IEEE Multimedia, vol. 8, no. 4, pp. 22-28, 2001.
[12] T. A. Hawi, M. Qutayri, and H. Barada, "Steganalysis attacks on stego-images using stego-signatures and statistical image properties," in 2004 IEEE Region 10 Conference TENCON 2004., 2004, pp. 104-107: IEEE.
[13] C.-T. Hsu and J.-L. J. I. T. o. i. p. Wu, "Hidden digital watermarks in images," IEEE Transactions on Image Processing, vol. 8, no. 1, pp. 58-68, 1999.
[14] J. Ruanaidh, W. J. Dowling, and F. M. Boland, "Phase watermarking of digital images," in Proceedings of 3rd IEEE International Conference on Image Processing, 1996, vol. 3, pp. 239-242: IEEE.
[15] M. Barni, F. Bartolini, and A. J. I. t. o. i. p. Piva, "Improved wavelet-based watermarking through pixel-wise masking," IEEE Transactions on Image Processing, vol. 10, no. 5, pp. 783-791, 2001.
[16] P.-C. Su and C.-C. J. I. T. o. C. E. Kuo, "Steganography in JPEG2000 compressed images," IEEE Transactions on Consumer Electronics, vol. 49, no. 4, pp. 824-832, 2003.
[17] S. J. A. i. n. i. p. s. Baluja, "Hiding images in plain sight: Deep steganography," Advances in neural information processing systems, vol. 30, 2017.
[18] S. J. I. t. o. p. a. Baluja and m. intelligence, "Hiding images within images," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 7, pp. 1685-1697, 2019.
[19] M. Tancik, B. Mildenhall, and R. Ng, "Stegastamp: Invisible hyperlinks in physical photographs," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 2117-2126.
[20] X. Weng, Y. Li, L. Chi, and Y. Mu, "High-capacity convolutional video steganography with temporal residual modeling," in Proceedings of the 2019 on international conference on multimedia retrieval, 2019, pp. 87-95.
[21] D. P. Kingma and P. J. A. i. n. i. p. s. Dhariwal, "Glow: Generative flow with invertible 1x1 convolutions," arXiv preprint arXiv:1807.03039, vol. 31, 2018.
[22] H. Yang, Y. Xu, X. Liu, and X. J. E. A. o. A. I. Ma, "PRIS: Practical robust invertible network for image steganography," Engineering Applications of Artificial Intelligence, vol. 133, p. 108419, 2024.
[23] Y. Xu, C. Mou, Y. Hu, J. Xie, and J. Zhang, "Robust invertible image steganography," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 7875-7884.
[24] X. Wang et al., "Esrgan: Enhanced super-resolution generative adversarial networks," in Proceedings of the European conference on computer vision (ECCV) workshops, 2018, pp. 0-0.
[25] E. Agustsson and R. Timofte, "Ntire 2017 challenge on single image super-resolution: Dataset and study," in Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2017, pp. 126-135.
[26] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "Imagenet: A large-scale hierarchical image database," in 2009 IEEE conference on computer vision and pattern recognition, 2009, pp. 248-255: Ieee.
[27] T.-Y. Lin et al., "Microsoft coco: Common objects in context," in Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, 2014, pp. 740-755: Springer.
[28] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778.
指導教授 蘇柏齊(Po-Chyi Su) 審核日期 2024-8-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明