參考文獻 |
[1]I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, "Generative Adversarial Networks," Communications of the ACM, vol. 63, no. 11, pp. 139–144, Oct. 2020, doi: https://doi.org/10.1145/3422622.
[2]M. Westerlund, "The Emergence of Deepfake Technology: A Review," Technology Innovation Management Review, vol. 9, no. 11, pp. 39–52, Jan. 2019, doi: https://doi.org/10.22215/timreview/1282.
[3]K. Jungil, K. Jaehyeon, and B. Jaekyoung, "HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis," arXiv.org, Oct. 2020, Available: https://arxiv.org/abs/2010.05646v2.
[4]Sai Rajeswar, S. Subramanian, F. Dutil, C. Pal, and A. Courville, "Adversarial Generation of Natural Language," arXiv (Cornell University), May 2017, doi: https://doi.org/10.48550/arxiv.1705.10929.
[5]C. Bowles, L. Chen, R. Guerrero, P. Bentley, A. Hammers, D. Alexander Dickie, M. Valdés Hernández, J. Wardlaw, D. Rueckert, "GAN Augmentation: Augmenting Training Data using Generative Adversarial Networks," arXiv (Cornell University), Jan. 2018, doi: https://doi.org/10.48550/arxiv.1810.10863.
[6]A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, "Survey of intrusion detection systems: techniques, datasets and challenges," Cybersecurity, vol. 2, no. 1, pp. 1–22, Jul. 2019, doi: https://doi.org/10.1186/s42400-019-0038-7..
[7]T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. New York, NY: Springer New York, 2009. doi: https://doi.org/10.1007/978-0-387-84858-7.
[8]A. Fernandez, S. Garcia, F. Herrera, and N. V. Chawla, "SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary," Journal of Artificial Intelligence Research, vol. 61, pp. 863–905, Apr. 2018, doi: https://doi.org/10.1613/jair.1.11192.
[9]Z. Zhang, M. Li, and J. Yu, "On the convergence and mode collapse of GAN," Dec. 2018, doi: https://doi.org/10.1145/3283254.3283282.
[10]B. Neyshabur, S. Bhojanapalli, and A. Chakrabarti, "Stabilizing GAN Training with Multiple Random Projections," arXiv.org, Jun. 22, 2018. https://arxiv.org/abs/1705.07831 (accessed Jun. 12, 2024).
[11]J. Su, "GAN-QP: A Novel GAN Framework without Gradient Vanishing and Lipschitz Constraint," arXiv.org, Dec. 15, 2018. https://arxiv.org/abs/1811.07296 (accessed Jun. 12, 2024).
[12]S. Tao and J. Wang, "Alleviation of Gradient Exploding in GANs: Fake Can Be Real," arXiv (Cornell University), Jan. 2019, doi: https://doi.org/10.48550/arxiv.1912.12485.
[13]Y. Qin, N. Mitra, and P. Wonka, "How Does Lipschitz Regularization Influence GAN Training?," Lecture notes in computer science, pp. 310–326, Jan. 2020, doi: https://doi.org/10.1007/978-3-030-58517-4_19.
[14]R. Dey and F. M. Salem, "Gate-variants of Gated Recurrent Unit (GRU) neural networks," 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Aug. 2017, doi: https://doi.org/10.1109/mwscas.2017.8053243.
[15]Ishaan Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, "Improved Training of Wasserstein GANs," Mar. 2017, doi: https://doi.org/10.48550/arxiv.1704.00028.
[16]Y. Wang, P. Bilinski, Francois Bremond, and Antitza Dantcheva, "ImaGINator: Conditional Spatio-Temporal GAN for Video Generation," HAL (Le Centre pour la Communication Scientifique Directe), Mar. 2020, doi: https://doi.org/10.1109/wacv45572.2020.9093492.
[17]M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, "GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium," Jun. 2017, doi: https://doi.org/10.48550/arxiv.1706.08500.
[18]I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, "Improved Training of Wasserstein GANs," arXiv:1704.00028 [cs, stat], Dec. 2017, Available: https://arxiv.org/abs/1704.00028v3.
[19]D. Baby and S. Verhulst, "Sergan: Speech Enhancement Using Relativistic Generative Adversarial Networks with Gradient Penalty," May 2019, doi: https://doi.org/10.1109/icassp.2019.8683799.
[20]A. Voynov and A. Babenko, "Unsupervised Discovery of Interpretable Directions in the GAN Latent Space," arXiv.org, Jun. 24, 2020. https://arxiv.org/abs/2002.03754v3 (accessed Jun. 12, 2024).
[21]Y.-P. Hsieh, C. Liu, and V. Cevher, "Finding Mixed Nash Equilibria of Generative Adversarial Networks," arXiv (Cornell University), Jan. 2018, doi: https://doi.org/10.48550/arxiv.1811.02002.
[22]H. Salehinejad, S. Sankar, J. Barfett, E. Colak, and S. Valaee, "Recent Advances in Recurrent Neural Networks," arXiv.org, Feb. 22, 2018. https://arxiv.org/abs/1801.01078v3.
[23]G. Van Houdt, C. Mosquera, and G. Nápoles, "A review on the long short-term memory model," Artificial Intelligence Review, vol. 53, no. 8, May 2020, doi: https://doi.org/10.1007/s10462-020-09838-1.
[24]O. Adigun and B. Kosko, "Training Generative Adversarial Networks with Bidirectional Backpropagation," Dec. 2018, doi: https://doi.org/10.1109/icmla.2018.00190.
[25]L. Yang and A. Shami, "On hyperparameter optimization of machine learning algorithms: Theory and practice," Neurocomputing, vol. 415, pp. 295–316, Nov. 2020, doi: https://doi.org/10.1016/j.neucom.2020.07.061.
[26]P. Philip and S. Minhas, "A Brief Survey on Natural Language Processing Based Text Generation and Evaluation Techniques," VFAST Transactions on Software Engineering, vol. 10, no. 3, pp. 24–36, Sep. 2022, doi: https://doi.org/10.21015/vtse.v10i3.1104.
[27]P. Ramachandran, B. Zoph, and Q. V. Le, "Searching for Activation Functions," arxiv.org, Oct. 2017, doi: https://doi.org/10.48550/arXiv.1710.05941.
[28]E. G. Gladyshev, "On Stochastic Approximation," Theory of probability and its applications, vol. 10, no. 2, pp. 275–278, Jan. 1965, doi: https://doi.org/10.1137/1110031.
[29]S. Jose, D. Malathi, B. Reddy, and D. Jayaseeli, "A Survey on Anomaly Based Host Intrusion Detection System," Journal of Physics: Conference Series, vol. 1000, p. 012049, Apr. 2018, doi: https://doi.org/10.1088/1742-6596/1000/1/012049.
[30]A. Javaid, Q. Niyaz, W. Sun, and M. Alam, "A Deep Learning Approach for Network Intrusion Detection System," Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS), 2016, doi: https://doi.org/10.4108/eai.3-12-2015.2262516.
[31]Jalal Ghadermazi, A. Shah, and N. D. Bastian, "Towards Real-time Network Intrusion Detection with Image-based Sequential Packets Representation," IEEE transactions on big data, pp. 1–17, Jan. 2024, doi: https://doi.org/10.1109/tbdata.2024.3403394.
[32]M. F. Umer, M. Sher, and Y. Bi, "Flow-based intrusion detection: Techniques and challenges," Computers & Security, vol. 70, pp. 238–254, Sep. 2017, doi: https://doi.org/10.1016/j.cose.2017.05.009.
[33]N. Hoque, D. K. Bhattacharyya, and J. K. Kalita, "Botnet in DDoS Attacks: Trends and Challenges," IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2242–2270, 2015, doi: https://doi.org/10.1109/comst.2015.2457491.
[34]Z. Chen, Q. Yan, H. Han, S. Wang, L. Peng, L. Wang, B. Yang, "Machine learning based mobile malware detection using highly imbalanced network traffic," Information Sciences, vol. 433–434, pp. 346–364, Apr. 2018, doi: https://doi.org/10.1016/j.ins.2017.04.044.
[35]S. Suthaharan, Machine Learning Models and Algorithms for Big Data Classification. Boston, MA: Springer US, 2016. doi: https://doi.org/10.1007/978-1-4899-7641-3.
[36]L. Peng, H. Zhang, Y. Chen, and B. Yang, "Imbalanced traffic identification using an imbalanced data gravitation-based classification model," Computer Communications, vol. 102, pp. 177–189, Apr. 2017, doi: https://doi.org/10.1016/j.comcom.2016.05.010.
[37]A. Cheng, "PAC-GAN: Packet Generation of Network Traffic using Generative Adversarial Networks," Oct. 2019, doi: https://doi.org/10.1109/iemcon.2019.8936224.
[38]Y. Li, D. Liu, H. Li, F. Wu, H. Zhang, H. Yang, "Convolutional Neural Network-Based Block Up-Sampling for Intra Frame Coding," IEEE Transactions on Circuits and Systems for Video Technology, vol. 28, no. 9, pp. 2316–2330, Sep. 2018, doi: https://doi.org/10.1109/TCSVT.2017.2727682.
[39]J. Mairal, P. Koniusz, Z. Harchaoui, and C. Schmid, "Convolutional Kernel Networks," arXiv.org, Nov. 14, 2014. https://arxiv.org/abs/1406.3332 (accessed Jun. 12, 2024).
[40]T. Kim and W. Pak, "Early Detection of Network Intrusions Using a GAN-Based One-Class Classifier," IEEE Access, vol. 10, pp. 119357–119367, 2022, doi: https://doi.org/10.1109/access.2022.3221400.
[41]Z. Liu and X. Yin, "LSTM-CGAN: Towards Generating Low-Rate DDoS Adversarial Samples for Blockchain-Based Wireless Network Detection Models," IEEE Access, vol. 9, pp. 22616–22625, Feb. 2021, doi: https://doi.org/10.1109/access.2021.3056482.
[42]M. Siracusano, Stavros Shiaeles, and Bogdan Ghita, "Detection of LDDoS Attacks Based on TCP Connection Parameters," arXiv (Cornell University), Oct. 2018, doi: https://doi.org/10.1109/giis.2018.8635701.
[43]O. Olayemi Petinrin, F. Saeed, X. Li, F. Ghabban, and K.-C. Wong, "Malicious Traffic Detection in IoT and Local Networks Using Stacked Ensemble Classifier," Computers, Materials & Continua, vol. 71, no. 1, pp. 489–515, 2022, doi: https://doi.org/10.32604/cmc.2022.019636.
[44]T. Chen and C. Guestrin, "XGBoost: a Scalable Tree Boosting System," Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’16, pp. 785–794, 2016, doi: https://doi.org/10.1145/2939672.2939785.
[45]M. Belgiu and L. Drăguţ, "Random forest in remote sensing: A review of applications and future directions," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 114, no. 114, pp. 24–31, Apr. 2016, doi: https://doi.org/10.1016/j.isprsjprs.2016.01.011.
[46]J. Cervantes, F. Garcia-Lamont, L. Rodríguez-Mazahua, and A. Lopez, "A comprehensive survey on support vector machine classification: Applications, challenges and trends," Neurocomputing, vol. 408, no. 1, pp. 189–215, Sep. 2020, doi: https://doi.org/10.1016/j.neucom.2019.10.118.
[47]X. Ying, "An Overview of Overfitting and its Solutions," Journal of Physics: Conference Series, vol. 1168, no. 2, p. 022022, Feb. 2019, doi: https://doi.org/10.1088/1742-6596/1168/2/022022.
[48]H. Abdi and L. J. Williams, "Principal component analysis," Wiley Interdisciplinary Reviews: Computational Statistics, vol. 2, no. 4, pp. 433–459, Jun. 2010, doi: https://doi.org/10.1002/wics.101.
[49]N. Moustafa and J. Slay, "UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)," IEEE Xplore, Nov. 01, 2015. https://ieeexplore.ieee.org/document/7348942.
[50]P. Goyal and A. Goyal, "Comparative study of two most popular packet sniffing tools-Tcpdump and Wireshark," IEEE Xplore, Sep. 01, 2017. https://ieeexplore.ieee.org/abstract/document/8319360.
[51]H. Hendrawan, P. Sukarno, and M. A. Nugroho, "Quality of Service (QoS) Comparison Analysis of Snort IDS and Bro IDS Application in Software Define Network (SDN) Architecture," IEEE Xplore, Jul. 01, 2019. https://ieeexplore.ieee.org/abstract/document/8835211 (accessed Aug. 14, 2021).
[52]E. Massart, "Improving weight clipping in Wasserstein GANs," 2022 26th International Conference on Pattern Recognition (ICPR), Aug. 2022, doi: https://doi.org/10.1109/icpr56361.2022.9956056.
[53]Artem Obukhov and Mikhail Krasnyanskiy, "Quality Assessment Method for GAN Based on Modified Metrics Inception Score and Fréchet Inception Distance," Advances in intelligent systems and computing, pp. 102–114, Jan. 2020, doi: https://doi.org/10.1007/978-3-030-63322-6_8.
[54]M. Soloveitchik, T. Diskin, E. Morin, and A. Wiesel, "Conditional Frechet Inception Distance," arXiv (Cornell University), Jan. 2021, doi: https://doi.org/10.48550/arxiv.2103.11521..
[55]P. Bühlmann and B. Yu, "Analyzing bagging," The Annals of Statistics, vol. 30, no. 4, Aug. 2002, doi: https://doi.org/10.1214/aos/1031689014.
[56]H. Binder, O. Gefeller, M. Schmid, and A. Mayr, "The Evolution of Boosting Algorithms," Methods of Information in Medicine, vol. 53, no. 06, pp. 419–427, 2014, doi: https://doi.org/10.3414/me13-01-0122.
[57]A. Patle and D. S. Chouhan, "SVM kernel functions for classification," IEEE Xplore, Jan. 01, 2013. https://ieeexplore.ieee.org/abstract/document/6524743 (accessed Dec. 07, 2021).
[58]S. Ding, X. Hua, and J. Yu, "An overview on nonparallel hyperplane support vector machine algorithms," Neural Computing and Applications, vol. 25, no. 5, pp. 975–982, Dec. 2013, doi: https://doi.org/10.1007/s00521-013-1524-6.
[59]X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, "A survey on ensemble learning," Frontiers of Computer Science, vol. 14, no. 2, pp. 241–258, Aug. 2019, doi: https://doi.org/10.1007/s11704-019-8208-z.
[60]B. de Ville, "Decision trees," Wiley Interdisciplinary Reviews: Computational Statistics, vol. 5, no. 6, pp. 448–455, Oct. 2013, doi: https://doi.org/10.1002/wics.1278.
[61]A. Kulesa, M. Krzywinski, P. Blainey, and N. Altman, "Sampling distributions and the bootstrap," Nature Methods, vol. 12, no. 6, pp. 477–478, May 2015, doi: https://doi.org/10.1038/nmeth.3414.
[62]N. Islam, F. Farhin, I. Sultana, M. Kaiser, M. Rahman, M. Mahmud, "Towards Machine Learning Based Intrusion Detection in IoT Networks," Computers, Materials & Continua, vol. 69, no. 2, pp. 1801–1821, 2021, doi: https://doi.org/10.32604/cmc.2021.018466.
[63]Tama, B. A., Comuzzi, M., & Rhee, K. H. (2019). "TSE-IDS: A two-stage classifier ensemble for intelligent anomaly-based intrusion detection system." IEEE access, 7, 94497-94507.
[64]D. Singh and B. Singh, "Investigating the impact of data normalization on classification performance," Applied Soft Computing, vol. 97, p. 105524, May 2019, doi: https://doi.org/10.1016/j.asoc.2019.105524.
[65]"pandas: powerful Python data analysis toolkit Release 1.4.4 Wes McKinney and the Pandas Development Team," 2022. Available: https://pandas.pydata.org/pandas-docs/version/1.4/pandas.pdf.
[66]C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. V. Kerkwijk, M. Brett, A. Haldane, J. Fernández del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, T. E. Oliphant "Array Programming with NumPy," Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020, doi: https://doi.org/10.1038/s41586-020-2649-2.
[67]A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, "PyTorch: An Imperative Style, High-Performance Deep Learning Library," arXiv (Cornell University), Dec. 2019, doi: https://doi.org/10.48550/arxiv.1912.01703.
[68]F. Klinker, "Exponential moving average versus moving exponential average," Mathematische Semesterberichte, vol. 58, no. 1, pp. 97–107, Dec. 2010, doi: https://doi.org/10.1007/s00591-010-0080-8.
[69]N. Ketkar, Deep Learning with Python. Berkeley, CA: Apress, 2017. doi: https://doi.org/10.1007/978-1-4842-2766-4.
[70]A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, "The Marginal Value of Adaptive Gradient Methods in Machine Learning," arXiv (Cornell University), Jan. 2017, doi: https://doi.org/10.48550/arxiv.1705.08292.
[71]J. W. Pitera, "Expected Distributions of Root-Mean-Square Positional Deviations in Proteins," Journal of Physical Chemistry B, vol. 118, no. 24, pp. 6526–6530, Mar. 2014, doi: https://doi.org/10.1021/jp412776d.
[72]H. Zhao, J. An, M. Yu, D. Lv, K. Kuang, and T. Zhang, "Nesterov-accelerated adaptive momentum estimation-based wavefront distortion correction algorithm," Applied Optics, vol. 60, no. 24, p. 7177, Aug. 2021, doi: https://doi.org/10.1364/ao.428465.
[73]Roy Nuary Singarimbun, Erna Budhiarti Nababan, and Opim Salim Sitompul, "Adaptive Moment Estimation To Minimize Square Error In Backpropagation Algorithm," Nov. 2019, doi: https://doi.org/10.1109/icosnikom48755.2019.9111563.
[74]Y.-F. Jiang, S. Chang, and Z. Wang, "TransGAN: Two Pure Transformers Can Make One Strong GAN, and That Can Scale Up," Feb. 2021, doi: https://doi.org/10.48550/arxiv.2102.07074.
[75]F.-A. Croitoru, V. Hondru, R. T. Ionescu, and M. Shah, "Diffusion Models in Vision: A Survey," IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–20, 2023, doi: https://doi.org/10.1109/TPAMI.2023.3261988.
[76]G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T. Liu, "LightGBM: A Highly Efficient Gradient Boosting Decision Tree," undefined, 2017. https://www.semanticscholar.org/paper/LightGBM%3A-A-Highly-Efficient-Gradient-Boosting-Tree-Ke-Meng/497e4b08279d69513e4d2313a7fd9a55dfb73273.
[77]Liudmila Ostroumova Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey Gulin, "CatBoost: unbiased boosting with categorical features," arXiv (Cornell University), Jun. 2017, doi: https://doi.org/10.48550/arxiv.1706.09516. |